Missing value and comparison problems: what pupils know before the teaching of proportion
Tipo de documento
Lista de autores
Silvestre, Ana Isabel y da-Ponte, João Pedro
Resumen
This paper analyses grade 6 pupils’ mathematical processes and difficulties in solving proportion problems before the formal teaching of this topic. Using a qualitative methodology, we examine pupils’ thinking processes at four levels of performance in missing value and comparison problems. The results show that pupils tend to use scalar composition and decomposition strategies in missing value problems and functional strategies in comparison problems. Pupils’ difficulties are related to a lack of recognition of the multiplicative nature of proportion relationships.
Fecha
2012
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Bowers, J., Nickerson, S., & Kenehan, G. (2002). Using technology to teach concepts of speed. In B. Litwiller & G. Bright (Eds.), Making sense of frac- tions, ratios and proportions (pp. 176-187). Reston, VA: NCTM. Christou, C., & Philippou, G. (2002). Mapping and development of intuitive pro- portional thinking. Journal of Mathematical Behavior, 20(3), 321-336. Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and pro- portion: research implications. In D. Owens (Ed.), Research ideas for the classroom (pp. 159-178). New York, NY: Macmillan. Denzin, N. K., & Lincoln, Y. S. (1994). Introduction: Entering the field of quali- tative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualita- tive research (pp. 1-17). London, United Kingdom: Sage. Hart, K. (1984). Ratio: children’s strategies and errors. London, United King- dom: NFER–Nelson. Lamon, S. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal for Research in Mathematics Education, 24(1), 41-61. Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In M. Behr & J. Hiebert (Eds.), Number concepts and operations for the middle grades (pp. 93-118). Hillsdale, NJ: LEA. Post, T., Behr, M., & Lesh, R. (1988). Proportionality and the development of prealgebra understandings. In A. Coxford (Ed.), Algebraic concepts in the curriculum K-12. 1988 Yearbook (pp. 78-90). Reston, VA: NCTM. Stanley, D., McGowan, D., & Hull, S. H. (2003). Pitfalls of over-reliance on cross multiplication as a method to find missing values. Texas Mathematics Teacher, 11(1), 9-11. Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57-86. Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127-174). New York, NY: Academic Press.