On the Development of Early Algebraic Thinking
Tipo de documento
Autores
Lista de autores
Radford, Luis
Resumen
This article deals with the question of the development of algebraic thinking in young students. In contrast to mental approaches to cognition, we argue that thinking is made up of material and ideational components such as (inner and outer) speech, forms of sensuous imagination, gestures, tactility, and actual actions with signs and cultural artifacts. Drawing on data from a longitudinal classroom-based research program where 8-year old students were followed as they moved from Grade 2 to Grade 3 to Grade 4, our developmental research question is investigated in terms of the manner in which new relationships between embodiment, perception, and symbol-use emerge and evolve as students engage in patterning activities.
Fecha
2012
Tipo de fecha
Estado publicación
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Becker, J., & Rivera, F. D. (Eds.) (2008). Generalization in algebra: the foundation of algebraic thinking and reasoning across the grades. ZDM, 40(1), 1. Bellugi, U., Lai, Z., & Wang, P. (1997). Language, communication. and neural system in Williams syndrome. Mental Retardation and Developmental Disabilities, 3, 334-342. Bonnet, C. (1769). Contemplation de la nature [Contemplation of nature]. Amsterdam, The Netherlands: Marc-Michel Rey. Brigaglia, P. (2010). Insegnamento/apprendimento della geometria in situazioni di disabilità. Unpublished doctoral dissertation, Università di Palermo, Italy. Bringuier, J. C. (1980). Conversations with Jean Piaget. Chicago, IL: Chicago University Press. Brizuela, B., & Schliemann, A. (2004). Ten-year-old students solving linear equations. For the Learning of Mathematics, 24(2), 33-40. Cai, J., & Knuth, E. (Eds.) (2011). Early algebraization. New York, NY: Springer. Carraher, D. W., & Schliemann, A. (2007). Early algebra and algebraic reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Greenwich, CT: Information Age Publishing. Carraher, D. W., Schliemann, A., Brizuela, B., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87-115. Elias, N. (1991). La société des individus [The society of individuals]. Paris, France: Fayard. Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed.) (pp. 626-655). New York, NY: Taylor and Francis. Gould, S. J. (1977). Ontogeny and philogeny. Cambridge, United Kingdom: The Belknap Press of Harvard University Press. Haeckel, E. (1912). The evolution of man. London, United Kingdom: Watts & Co. Hegel, G. (1978). Hegel’s philosophy of subjective spirit. Vol. 3: Phenomenology and psychology (Trans. M. J. Petry). Dordrecht, The Netherlands: D. Reider. Høyrup, J. (2008). The tortuous ways toward a new understanding of algebra in the Italian abbacus school (14th-16th centuries). In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education and the 30th North American Chapter (pp. 1-15). Morelia, Mexico: PME. Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 579-593). New York, NY: Springer. Luria, A. R., & Vygotsky, L. S. (1998). Ape primitive man and child. Essays in the history of behavior. Boca Raton, FL: CRC Press LLC. Mengal, P. (1993). Psychologie et loi de recapitulation [Psychology and the law of recapitulation]. In P. Mengal (Ed.), Histoire du concept de récapitulation (pp. 93-109). Paris, France: Masson. Moss, J., & Beatty, R. (2006). Knowledge building and knowledge forum: Grade 4 students collaborate to solve linear generalizing problems. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 193-199). Prague, Czech Republic: PME. Radford, L. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra. (pp. 13-63). Dordrecht, The Netherlands: Kluwer. Radford, L. (2006). The cultural-epistomological conditions of the emergence of algebraic symbolism. In F. Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings of the 2004 conference of the international study group on the relations between the history and pedagogy of mathematics & ESU 4 - revised edition (pp. 509-24). Uppsala, Sweden: PME. Radford, L. (2008a). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education (pp. 215-234). Rotterdam, The Netherlands: Sense Publishers. Radford, L. (2008b). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40(1), 83-96. Radford, L. (2010a). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62. Radford, L. (2010b). Elementary forms of algebraic thinking in young students. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 73-80). Belo Horizonte, Brazil: PME. Radford, L. (2010c). The eye as a theoretician: Seeing structures in generalizing activities. For the Learning of Mathematics, 30(2), 2-7. Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 303-322). Berlin, Germany: Springer-Verlag. Rieber, R. W., & Carton, A. S. (Eds.) (1987). Notes to the English edition. In Authors (Eds.), The collected works of L. S. Vygotsky (Vol. 1, pp. 387-389). New York, NY: Plenum. Rivera, F. D. (2010). Second grade students’ preinstructional competence in patterning activity. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 81-88). Belo Horizonte, Brazil: PME. Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. Dordrecht, The Netherlands: Springer. Vygotsky, L. S. (1987). Collected works (Vol. 1) (Eds. R. W. Rieber & A. S. Carton). New York, NY: Plenum. Vygotsky, L. S. (1999). Collected works (Vol. 6) (Eds. R. W. Rieber & A. S. Carton). New Work, NY: Plenum. Warren, E., & Cooper, T. (2008). Generalizing the pattern rule for visual growth patterns. Educational Studies in Mathematics, 67(2), 171-185. Werner, H. (1957). Comparative psychology of mental development. New York, NY: International Universities Press.