Reasoning By Contradiction in Dynamic Geometry
Tipo de documento
Lista de autores
Baccaglini-Frank, Anna, Antonini, Samuele, Leung, Allan y Mariotti, Maria Alessandra
Resumen
This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students’ work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we support the claim that a DGS can offer “guidance” in the solver’s development of an indirect argument thanks to the potential it offers of both constructing certain properties robustly, and of helping the solver perceive pseudo objects.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Referencias
Antonini, S., & Mariotti, M. A. (2007). Indirect proof: an interpreting model. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 541-550). Larnaca, Cyprus: University of Cyprus. Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? Zentralblatt für Didaktik der Mathematik, 40(3), 401-412. Baccaglini-Frank, A. (2010). The maintaining dragging scheme and the notion of instrumented abduction. In P. Brosnan, D. Erchick, & L. Flevares (Eds.), Pro- ceedings of the 10th Conference of the PME-NA (Vol. 6, pp. 607-615). Co- lumbus, OH: The Ohio State University. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures through dragging in dynamic geometry: the Maintaining Dragging Model. Interna- tional Journal of Computers for Mathematical Learning, 15(3), 225-253. Healy, L. (2000). Identifying and explaining geometric relationship: interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the IGPME (Vol. 1, pp. 103- 117). Hiroshima, Japan: University of Melbourne. Leron, U. (1985). A direct approach to indirect proofs. Educational Studies in Mathematics, 16(3), 321-325. Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: a case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7(2), 145-165. Mariotti, M. A., & Antonini, S. (2006). Reasoning in an absurd world: difficul- ties with proof by contradiction. In J. Novotna, H. Moraova, M. Kratka, & N. Sthlikova (Eds.), Proceedings of the 30th PME Conference (Vol. 2, pp. 65- 72). Prague, Czech Republic: Faculty of Education, Charles University in Prague. Mariotti, M. A., & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs by contradiction in geometry. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villers (Eds.), Proof and proving in mathematics education, ICMI Study 19 Conference Proceedings (Vol. 2, pp. 82-87). Taipei, Taiwan: National Taiwan Normal University. Wu Yu, J., Lin, F., & Lee, Y. (2003). Students’ understanding of proof by con- tradiction. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceed- ings of the 2003 Joint Meeting of PME and PMENA (Vol. 4, pp. 443-449). Honolulu, HI: College of Education, University of Hawaii.