Um olhar matemático para o discurso e a atividade de praticantes de patchwork no atelier
Tipo de documento
Autores
Lista de autores
Martins, Ernani
Resumen
Patchwork é uma atividade que envolve a costura de retalhos em um trabalho de grande design. A produção desse design é baseada em padrões de repetição, construídos com diferentes formas coloridas, cuidadosamente medidas e cortadas, gerando a visualização de formas geométricas básicas. Na montagem deste trabalho é comum, no discurso das praticantes do ofício, o uso de palavras e expressões que permeiam a linguagem de sentidos matemáticos, utilizada no contexto escolar e acadêmico. Diante disso, buscamos uma descrição e um entendimento acerca da confecção desse artesanato, em uma comunidade situada em Recife, Pernambuco - Brasil. Nesse processo, foi analisado como o entendimento sobre a montagem dos padrões de repetição é engendrado às aprendizes, a partir do discurso das artesãs, focando-se nas questões ligadas à produção de sentido. Os achados apontam que os entendimentos empregados para determinar comprimentos e estabelecer formas estão ligados a contextos específicos e são de natureza diferente dos entendimentos empregados no uso destes conhecimentos, no trabalho com a matemática na escola, na academia. Por isso, os significados de termos matemáticos podem diferir radicalmente em função dos contextos em que estão sendo usados, indo de encontro à ideia de uma linguagem matemática única, aplicada a qualquer contexto.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Culturales | Desde disciplinas académicas | Formas geométricas | Software
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Editores (actas)
Lista de editores (actas)
SEMUR, Sociedad de Educación Matemática Uruguaya
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
3396-3403
ISBN (actas)
Referencias
Condé, M. L. L. (1998). Wittgenstein Linguagem e Mundo. São Paulo: Annablume. (2004). As Teias da razão: Wittgenstein e a crise da racionalidade moderna. Belo Horizonte: Argvmentvm Editora. Da Rocha Falcão, J. T. (2003). Psicologia da educação matemática: uma introdução. Belo Horizonte: Autêntica. EcheverríA, R. (2006). Ontología del lenguaje. Buenos Aires: Granica: J.C. Sáez Editor. Frankenstein, M. & powel, A. (1994). Toward liberatory mathematics Paulo Freire’s epistemology and ethnomathematics. In P. McLaren e C. Lankshear (Eds). Politics of Liberation: paths from Freire. London: Routledge. Knijnik, G. (2004). Itinerários da etnomatemática: questões e desafios sobre o cultural, o social e o político na educação matemática. In: KNIJNIK, G.; WANDERER, F. & OLIVEIRA, C. (Eds.), Etnomatemática, currículo e formação de professores. Santa Cruz do Sul: EDUNISC. (2006a). Educação matemática, culturas e conhecimento na luta pela terra. Santa Cruz do Sul: EDUNISC. (2006b). Regimes de verdade sobre a educação matemática de jovens e adultos do campo: um estudo introdutório. Anais do III SIPEM, Águas de Lindóia, SP. Lave, J. & wenger, E. (1991) Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press. Meira, L. & pinheiro, M. (2007). A. Produção de sentidos no uso que se faz de gráficos. Estudos de Psicologia (Natal), v. 12, 135-152. Miguel, A. & vilela, D. S. (2008). Práticas escolares de mobilização de cultura matemática. Cadernos Cedes, Campinas, v. 28, n. 74, 97-120. Wanderer, F. (2007). Escola e matemática escolar: mecanismos de regulação sobre sujeitos escolares de uma localidade rural de colonização alemã do Rio Grande do Sul. Tese (Doutorado em Educação). Programa de Pós-Graduação em Educação. São Leopoldo: Universidade do Vale do Rio dos Sinos. Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity. Cambridge, UK: Cambridge University Press. Wittgenstein, L. (2004). Investigações filosóficas. Petrópolis: Vozes.
Proyectos
Cantidad de páginas
8