La lección de matemáticas a través de estudios internacionales con videos
Tipo de documento
Autores
Lista de autores
Ruiz, Ángel
Resumen
Se busca apuntalar el uso de videos en la investigación en Educación Matemática, por lo que se describen algunas de sus ventajas así como algunas de sus limitaciones. Se analizan tres estudios de videos sobre las lecciones en la enseñanza de la matemática: los dos primeros realizados dentro de las pruebas comparativas Trends in International Mathematics and Science Study (TIMSS) y el tercero: el Learners Perspective Study (LPS), por un equipo de investigadores con una metodología más comprehensiva desarrollada originalmente por David Clarke en Australia. Por medio de esos estudios se buscan detectar algunos elementos interesantes para la práctica de la enseñanza de las matemáticas. Se establecen comparaciones y balances globales sobre el significado de estos estudios. Además, se incluye un apartado sobre las características particulares de la lección en Japón, la que ocupa un papel relevante en los estudios realizados. Las conclusiones apuntan a subrayar fortalezas, problemas y perspectivas de este tipo de estudios comparativos internacionales, en su relación con la labor de aula en matemáticas.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Comparativo | Desarrollo del profesor | Otra (fuentes) | Usos o significados
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
An, S. (2004). Capturing the Chinese Way of Teaching: The Learning-Questioning and Learning- Reviewing Instructional Model. En: Lianghuo, F.; Ngai-Ying, W.; Jinfa, C. & Shiqi, L. (Eds.) How Chinese learn mathematics. Perspectives from Insiders. Singapore: World Scientific. An, S.; Kulm, G.; Wu, Z.; Ma, F. & Wang (2006). The impact of cultural differences on Middle School Mathematics Teachers’ Beliefs in the U.S. and China. En Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. (2006) (Eds.). Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer. Cai, X. & Lai, B. (1994). Analects of Confucius. Beijing: Sinolingua. Citado por An (2004). Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (2006) (Eds.). textitMaking Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Clarke, D. J. (1998). Studying the classroom negotiation of meaning: Complementary accounts methodology. Chapter 7 en A. Teppo (Ed). Qualitative research nethods in mathematics education, número monográfico del Journal for Research in Mathematics Education, Reston, VA: NCTM, 98-111. Clarke, D.; Keitel C. & Shimizu, Y. (2006) (Eds.). Mathematics Classrooms in Twelve Countries: The Insider’s Perspective, The Netherlands: Sense Publishers. Clarke, D.; Mesiti, C.; Jablonka, E.; & Shimizu, Y. (2006). Addressing the Challenge of Legitimate International Comparisons: Lesson Structure in the USA, Germany and Japan. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Clarke, Emanuelsson, Jablonka & Mok (2006). The Learners’s Perspective and International Comparisons of Classroom Practice. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Ernest P. (1991). The Philosophy of Mathematics Education, London: The Falmer Pres. Givving, KB; Hiebert, J.; Jacobs, JK.; Hollingsworth, H. & Gallimore, R. (2005). Are There National Patterns of Teaching? Evidence from the TIMSS 1999 Video Study. Gu, L. (1981). The visul effect and pshychological implication of transfornation of fugures in geometry. Citado por Gu, L.; Huang, R. & Marton, F. (2004). Gu, L.; Huang, R. & Marton, F. (2004). Teaching with Variation: A Chinese Way of Promoting Effective Mathematics Learning. En Lianghuo, F.; Ngai-Ying, W.; Jinfa, C. & Shiqi, L. (Eds.) How Chinese learn mathematics. Perspectives from Insiders. Singapore: World Scientific. Häggsström, J. (2006). The introduction of New Content: What is Possible to Learn? En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Hiebert, J. & Handa, Y. (2004). A Modest Proposal for Reconceptualizaing the Activity of Learning Mathematical Procedures. Trabajo presentado en la Annual Meeting of the American Research Association, San Diego. Hiebert, J. & Grouws, D. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 371 - 404). Charlotte, NC: Information Age Publishing. Hiebert, J.; Gallimore, R.; Garnier, H.; Givvin, K.; Hollingsworth, H.; Jacobs, J.; Chui, A.; Wearne, D.; Smith, M.; Kersting, N.; Manaster, A.; Tseng, E.; Etterbeek, W.; Manaster, C.; Gonzales, P. & Stigler, J. (2003). Teaching Mathematics in Seven Countries. Results Form the TIMSS 1999 VideoStudy. EUA: US Department of Education, National Center for Education Statistics. Hino, K. (2007). Toward the problem-centered classroom: trends in mathematical problem solving in Japan. ZDM Mathematics Education, 39:503-514. Hirabayashi, I. (2006). A traditional aspect of Mathematics Education in Japan. En Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer. Isoda, M; Stephens, M.; Ohara, Y. & Miyakawa, T. (Eds.). (2007). Japanese Lesson Study in Mathematics, Singapore: World Publishing Co. Jablonka, E. (2006). Student(s) at the Front: Forms and Functions in Six Classrooms form Germany, Hong Kong and the United States. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Keitel, C. & Kilpatrick, J. (1999). The rationality and irrationality of International comparative Studies. En G. Kaiser, E. Luna & I. Huntley (Eds.), International comparisons in mathematics education (pp. 241-256) London: Falmer Press. Le Tendre, G.K.; Baker, D.P.; Akiba, Mo.; Goesling, B.&Wiseman, A. (2005). Teachers’Work: Institucional Isomorphism and Cultural Variation in the US, Germany and Japan. Educational Researcher 30, No. 6 (2001): 3-15. Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer. Leung, K. S. F. (2006). Mathematics Education in East Asia and theWest: Does Culture matter? En En Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer. Lianghuo, F.; Ngai-Ying, W.; Jinfa, C. & Shiqi, L. (2004). (Eds.) How Chinese learn mathematics. Perspectives from Insiders. Singapore: World Scientific. Lopez-Real, F.; Mok, A.C.I.; Leung, K.S.F., & Marton (2004). Identifying a Pattern of Teaching: An Analysis of a Shangai Teacher’s Lessons. En Lianghuo, F.; Ngai-Ying, W.; Jinfa, C. & Shiqi, L. (2004) (Eds.). textitHow Chinese learn mathematics. Perspectives from Insiders. Singapore: World Scientific. Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, Nj: Lawrence Erlbaum Associates. Marton, F. & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum. Marton, F.; Runesson, U. & y Tsui, A. (2004). The space of learning. En F. Marton & A. Tsui (Eds.), Classroom discourse and the space of Learning (pp. 3-40). Mahwah, NJ: Lawrence Erlbaum. Mesiti, C. & Clarke, D. (2006). Beginning the Lesson: The First Ten Minutes. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Mo, I.M.A.C. & y Kaur, B. (2006). “Learning Task” Lesson Events. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Mullis, I.; Martin, M.; González,M. & Chrostowski, S. (Eds.) (2004). TIMSS 2003 International Mathematics Report. Chestnut Hill, MA: TIMSS & PIRLS International Study Center. Nagasaki, E. (1990). Problem solving. En Sin Sansu Kyoiku Kenkyukai (Ed.). Sansu kyoiku no kiso riron (Basic theory of elementary mathematics education), pp. 134-146. Tokyo: Toyokan. Citado por Hino (2007). Neubrand, J. (2006). The TIMSS 1995 and 1999 Video Studies. En Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. (2006) Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer. O’Keefe, C.; Xu, L.H. & Clarke (2006). Kikan-Shido: Between Desks Instruction. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Ruiz, A. (2003). Historia y filosofía de las Matemáticas. San José, Costa Rica: EUNED. Ruiz, A. (2010). Conocimientos y currículo en la Educación Matemática. Cuadernos de Investigación y Formación en Educación Matemática, Número 6, Año 5, abril, Costa Rica. Ruiz, A.; Alfaro, C. & Gamboa, R. (2006). Aprendizaje de las matemáticas: conceptos, procedimientos, lecciones y resolución de problemas. Cuadernos de Investigación y Formación en Educación Matemática, Número 1, Año 1, setiembre, Costa Rica. Ruiz, A.; Barrantes, H. & Gamboa, R. (2009). Encrucijada en la Enseñanza de las Matemáticas: la formación de educadores. Cartago, Costa Rica: Editorial Tecnológica de Costa Rica. Runesson, U. & Marton, F. (2002). The object of learning and the space of variation. En F. Marton & P. Morris (eds.) What matters Discovering critical conditions of classroom learning. Göteborg Studies in educational sciences (pp. 19-37). Göteborg: Acta Universitaris Gothoburgensis. Sawada, T. (1997). Developing Lesson Plans. En Becker, J & Shimada, S. The Open-Ended Approach: A New Proposal for Teaching Mathematics. Reston, Virginia, USA: NCTM. Sekiguchi, Y. & Miyazaki, M. (2000). Argumentación y demostración en Japón. Preuve. International Newsletter on the Teaching and Learning of Mathematical Proof. Febrero 2002. Recuperado 2 de abril del 2009: http://www-didactique.imag.fr/preuve/Newsletter/ 000102Theme/000102ThemeES.html Shimada, K. (2007). Lesson Study: A Partnership among Education Sites, Board of Education, and Universities. En Isoda, M; Stephens, M.; Ohara, Y. & Miyakawa, T. Japanese Lesson Study in Mathematics, Singapore: World Publishing Co. Shimada, S. (1997). The Significance of an Open-Ended Approach. En Becker, J & Shimada, S. The Open-Ended Approach: A New Proposal for Teaching Mathematics. Reston, Virginia, USA: NCTM. Shimizu, Y. (2006). How Do You Conclude Today’s Lesson? The Form and Functions of “Matome” in Mathematics Lessons. En Clarke, D; Emanuelsson, J.; Jablonka, E. & Mok, I. A. C. (Eds.). Making Connections. Comparing Mathematics Classrooms Around The World. The Netherlands: Sense Publishers. Shimizu, Y. (2007). What are the characteristics of Japanese Lessons Emerged by the International Comparisons? En Isoda, M; Stephens, M.; Ohara, Y. & Miyakawa, T. Japanese Lesson Study in Mathematics, Singapore: World Publishing Co. Shimizu, Y. (2009). Characterizing exemplary mathematics instruction in Japanese classrooms from the learner’s perspective. ZDM Mathematics Education 41:311-318. Smith, M. (2000). A Comparison of the Types of Mathematical Tasks and How they were Completed Turing Eighth-grade Mathematics Instruction in Germany, Japan and the United States. Disertación doctoral, University of Delaware. Spindler, G. & L. Spindler (1992). Cultural process and ethnography: an anthropological perspective. In M. LeCompte, W. Millroy, and J. Preissle, eds., The Handbook of Qualitative Research in Education (pp. 53-92). New York, NY: Academic Press / Harcourt Brace. Stigler, J. (2009). Reflections on Mathematics Teaching and How to Improve It, Presentación (transcripción). California Online Mathematics Education Times (COMET), Vol. 10, No. 12 - 9 Mayo 2009. Stigler, J. & Hiebert, J. (2004). Improving mathematics teaching. Educational Leadership, 6 (5), 12-17. Stigler, J. W. & Hiebert, J. (1999). The teaching gap. New York: The Free Press. Tobin, J.; Wu, D. & D. Davidson (1989). textitPreschool in Three Cultures: Japan, China, and the United States. New Haven, CT: Yale University Press. Ulewicz, M. & Beatty, A. (2001). (Eds.). The Power of Video Technology in International Comparative Research in Education. Free Executive Summary. EUA: National Academies Press. Descargado de http://www.nap.edu/catalog/10150.html, 13 de junio del 2009. Wang, T. & Murphy, J. (2004). An Examination of Coherence in a Chinese Mathematics Classroom. En Lianghuo, F.; Ngai-Ying, W.; Jinfa, C. & Shiqi, L. (Eds.) How Chinese learn mathematics. Perspectives from Insiders. Singapore: World Scientific. Wu, M. (2006). A comparison of Mathematics performance between East and West: What PISA and TIMSS can tell us. En Leung, F.K.S.; Graf, K.D. & Lopez-Real, F. Mathematics Education in Different Cultural Traditions. A comparative Study of East Asia and the West. The 13th ICMI Study. USA: Springer.