Del análisis de datos a la inferencia: reflexiones sobre la formación del razonamiento estadístico
Tipo de documento
Autores
Lista de autores
Batanero, Carmen
Resumen
La inferencia estadística es uno de los temas más enseñados y, a la vez, peor comprendido y aplicado a nivel universitario. Recientemente se incluyen contenidos de inferencia en el Bachillerato, e incluso en la enseñanza secundaria en algunos países, surgiendo la necesidad de encontrar una transposición didáctica de estos temas asequible a los alumnos no universitarios. En esta conferencia se resumen algunas de las dificultades frecuentes de comprensión de la inferencia clásica, sugiriendo la importancia de educar el razonamiento estadístico en forma progresiva, antes de abordar el estudio formal de la inferencia. Se describen, asimismo, algunas aproximaciones alternativas a la enseñanza de la inferencia que pueden contribuir a la educación de este razonamiento, preparando al estudiante para una mejor comprensión y aplicación de la inferencia en la universidad y trabajo futuro.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Dificultades | Otro (inferencial) | Razonamiento | Reflexión sobre la enseñanza
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Abelson, R. (1997). On the surprising longevity of flogged horses: Why there is a case for the significance test? Psychological Science, 8(1), 12-14. Albert, J. (2000). Using a sample survey project to assess the teaching of statistical inference, Journal of Statistical Education, 8. On line: www.amstat.org/publications/jse/. Albert, J.; Rossman, A. (2001). Workshop statistics. Discovery with data. A bayesian approach. Bowling Green. OH: Key College Publishing. Artigue, M.; Batanero, C.; Kent, P. (2007). Mathematics thinking and learning at post-secondary level. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011-1049). Greenwich, CT: Information Age Publishing, Inc., & National Council of Teachers of Mathematics. Batanero, C. (2000). Controversies around significance tests. Mathematical Thinking and Learning, 2(1-2), 75-98. Batanero, C.; Díaz, C. (2006). Methodological and didactical controversies around statistical inference. Actes du 36iémes Journées de la Societé Française de Statistique. CD ROM. Paris: Societé Française de Statistique. Batanero, C.; Godino, J.; Vallecillos, A.; Green, D.; Holmes, P. (1994). Errors and difficulties in understanding elementary statistical concepts. International Journal of Mathematics Education in Science and Technology, 25(4), 527–547. Birnbaum, I. (1982). Interpreting statistical significance. Teaching Statistics, 4, 24–27 Borges, A.; San Luis, C.; Sánchez, J.; Cañadas, I. (2001). El juicio contra la hipótesis nula: muchos testigos y una sentencia virtuosa. Psicothema, 13 (1), 174-178. Cabriá, S. (1994). Filosofía de la estadística. Valencia: Servicio de Publicaciones de la Universidad. Castro-Sotos, A.; Vanhoof, S.; Noortgate, W.; Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2 98–113 Chance, B.; Garfield, J. (2004). Reasoning About Sampling Distributions. In D.Ben-Zvi and J. Garfield (eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 295-323). The Netherlands: Kluwer. Chow, L. (1996). Statistical significance: Rationale, validity and utility. London: Sage. Cumming, G.; Williams, J.; Fidler, F. (2004). Replication, and researchers’ understanding of confidence intervals and standard error bars. Understanding Statistics, 3, 299-311. Díaz, C. (2007). Introducción a la Inferencia Bayesiana. Granada: La autora. Díaz, C.; Fuente, I.; Batanero, C. (2008). Implications between learning outcomes in elementary Bayesian inference. In R. Gras (Ed.), Statistical implicative analysis: theory and applications (pp. 163-183). Springer. Studies in Computational Intelligence 127. Eddy, D.; (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. En D. Kahneman, P. Slovic y Tversky (Eds.), Judgement under uncertainty: Heuristics and biases. New York: Cambridge University Press. Falk, R. (1986) Misconceptions of statistical significance, Journal of Structural Learning, 9, 83–96. Falk, R.; Greenbaum, C. (1995) Significance tests die hard: The amazing persistence ofa probabilistic misconception, Theory and Psychology, 5 (1), 75-98. Fidler, F.; Cumming, G. (2005, August). Teaching confidence intervals: problems and potential solutions. Trabajo presentado en la International Statistical Institute, 55th Session. Lisbon. Fisher, R. (1935). The design of experiments. New York: Hafner Press. Green, D. (1991). A longitudinal study of children’s probability concepts. En D. Vere-Jones (Ed.), Proceedings of the Third International Conference on Teaching Statistics (pp. 320-328). Voorburg: International Statistical Institute. Hacking, I. (1990). The taming of chance. Cambridge, MA: Cambridge University Press. Harlow, L.; Mulaik, S. A.; Steiger, J. (1997). What if there were no significance tests? Mahwah, NJ: Lawrence Erlbaum. Harradine, A.; Batanero, C.; Rossman, A. (2011). Students and teachers’ knowledge of sampling and inference. En C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education, (pp. 235-246). New York: Springer. Jones, G.; Thornton, C. (2005). An overview of research into the teaching and learning of probability. En G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 65-92).. Dordrecht, The Netherlands: Kluwer Academic Publishers. Kahneman, D.; Slovic, P.; Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press. Krauss, S.; Wassner, K. (2002). How significance tests should be presented to avoid the typical misinterpretations. En B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Association for Statistics Education. Online: www.stat.auckland.ac.nz/˜iase/publications. Lecoutre, B.; Lecoutre, M. (2001). Uses, abuses and misuses of significance tests in the scientific commumity: Won’t the Bayesian choice be unavoidable? International Statistical Review, 69(3)-399-417. Lee, P. (2004). Bayesian statistics. An introduction. York, UK: Arnold. Liu, Y.; Thompson, P. (2009). Mathematics teachers understandings of proto-hypothesis testing. Pedagogies, 4 (2), 126-138. MEC (2007). Real Decreto 1467/2007, de 2 de noviembre, por el que se establece la estructura del bachillerato y se fijan sus enseñanzas mínimas (Royal Decreet establihing the estructure and content of the high school curriculum). Moore, D. (1997). New pedagogy and new content: the case of statistics. International Statistical Review, 635, 123-165. Morrison, D.; Henkel, R. (1970). The significance tests controversy. A reader. Chicago: Aldine. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM. Online: standards.nctm.org/. Nisbett, R.; Ross, L. (1980). Human inference: Strategies and shortcomings of social judgments. Englewood Cliffs, NJ: Prentice Hall. Rossman, A. (2008). Reasoning about informal statistical inference: One statistician’s view. Statistics Education Research Journal, 7 (2), 5-19. Online: http://www.stat.auckland.ac.nz/serj. O’Hagan, A.; Forster, J. (2004). Bayesian inference. Vol. 2B en Kendall’s Advanced Theory of Statistics. London: Arnold. Popper, K. (1967). La lógica de la investigación científica. Madrid: Tecnos. Rivadulla, A. (1991). Probabilidad e inferencia científica. Barcelona: Anthropos. Rubin, A.; Hammerman, J.; Konold, C. (2006). Exploring informal inference with interactive visualization software. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Association for Statistics Education. Online: www.stat.auckland.ac.nz/˜iase/publications. Saldanha. L., & Thompson, P. (2002) Conceptions of sample and their relationship to statistical inference. Educational Studies in Mathematics, 51, 257-270. Sedlmeier, P. (1999). Improving statistical reasoning. Theoretical models and practical implications. Mahwah, NJ: Erlbaum. Vallecillos, A. (1994). Estudio teórico-experimental de errores y concepciones sobre el contraste estadístico de hipótesis en estudiantes universitarios Tesis Doctoral. Universidad de Granada, España. Vallecillos, A. (1999). Some empirical evidence on learning difficulties about testing hypotheses. Proceedings of the 52 session of the International Statistical Institute (Vol.2, pp. 201–204). Helsinki: International Statistical Institute.