Transmitir, internalizar y extender: las justificaciones disciplinares de los profesores al hacer resolución de problemas en educación superior
Tipo de documento
Autores
Lista de autores
Toro, Valentina y Celis, Sergio
Resumen
Este trabajo busca entender cómo la matemática como disciplina influye en la toma de decisiones de profesores de educación superior, en el contexto de actividades de resolución de problemas. Los profesores entienden transmitir, internalizar y extender como parte de su rol y, al juntar estos tres motores, logran abordar contenidos matemáticos de forma crítica y profunda.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Continua | Otra (fuentes) | Práctica del profesor | Reflexión sobre la enseñanza
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
11
Número
1
Rango páginas (artículo)
45-49
ISSN
07181213
Referencias
Andrews, T., & Lemons, P. (2014). It’s Personal: Biology Instructors Prioritize Personal Evi-dence over Empirical Evidence in Teaching Decisions. CBE-Life Sciences Education, 14 (págs. 1-18). Braun, V., & Clarke, V. (2012). Thematic Analysis. En H. Cooper, Handbook of Research Methods in Psychology (Vol. 2, págs. 57-71). American Psychological Association. Chiu, M. (2004). Adapting teacher interventions to student needs during cooperative learning: How to improve student problem solving and time on-task. American Educational Research Journal, 41, 365-399. Freeman, S., Eddy, S., McDonough, M., Smith, M., Okoroafor, N., Jordt, H., & Wenderoth, M. (2014). Active learning increases student performance in science, engineering and mathe-matics. Proceedings of the National Academy of Sciences, 111. Hayward, C., Kogan, M., & Laursen, S. (2015). Facilitating Instructor Adoption of Inquiry-Based Learning in College Mathematics. International Journal of Research in Undergraduate Mathematics Education, 2 (págs. 59 – 82). Herbst, P., & Chazan, D. (2011). Research on Practical Rationality: Studying the justification of actions in mathematics teaching. The Mathematics Enthusiast, 8(3), 405-462. Hill, H., Ball, D., & Schilling, S. (2008). Unpacking pedagogical content knowledge: Concep-tualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400. Kunter, M., & Voss, T. (2013). The model of instructional quality in COACTIV: A multicrite-ria analysis. En Cognitive Activation in the Mathematics Classroom and Professional Compe-tence of Teachers (págs. 97-124). Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press. Schoenfeld, A. (2016). Learning to Think Mathematically: Problem Solving, Metacognition and Sense Making in Mathematics. Journal of Education, 196 (págs. 1-38). Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as com-municating to learn more about mathematical learning. Educational Studies in Mathematics, 46, 13-57. Turpen, C., Dancy, M., & Henderson, C. (2016). Perceived affordances and constraints regard-ing instructors’ use of Peer Instruction: Implications for promoting instructional change. Physi-cal Review Physics Education Research. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458-477.