Mathematical models and meanings by school and university students in a modelling task
Tipo de documento
Lista de autores
Carreira, Susana, Baioa, Ana Margarida y Werle, Lourdes Maria
Resumen
This study involves two classes from different educational levels, namely 9th grade and university. Students in both contexts were given a modelling task that required the development of a hand biometrics recognition system, during which they performed experimentation and simulation. As aims of the study, we look for distinctions and commonalities between the models developed in the two classes and seek to know how simulation and experimentation influence students’ production of meaning. The theoretical framework comprises the relationship between the modelling process and the prototyping process and adopts Peirce’s pragmatic perspective on meaning. The research is of a qualitative nature, assuming the characteristics of a case study. The results reveal many commonalities between the modelling in the two contexts. Moreover, experimentation and simulation were relevant elements for the production of meaning by the students, which is endorsed by a pragmatic perspective on meaning.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Estudio de casos | Modelización | Semiótica | Tareas | Usos o significados
Enfoque
Nivel educativo
Educación secundaria básica (12 a 16 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
17
Rango páginas (artículo)
67-83
ISSN
22544313
Referencias
Almeida, L. M. W. (2018). Considerations on the use of mathematics in modelling activities. ZDM Mathematics Education, 50(1), 19–30. Baioa, A. M., & Carreira, S. (2019). Simulations and prototypes in mathematical modelling tasks. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME11 (pp. 1136-1143). Utrecht, the Netherlands: ERME. Birta, L. G., & Arbez, G. (2007). Modelling and simulation. Exploring dynamic system behaviour. London, England: Springer. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), Proceedings of 12th International Congress on Mathematical Education (pp. 73–96). New York: Springer. Blum, W., & Leiß, D. (2007). How do teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling. Education, engineering and economics (pp. 222–231). Chichester, England: Horwood Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Cham, Switzerland: Springer. Carreira, S., & Baioa, A. M. (2017). Creating a color palette: The model, the concept, and the mathematics. In T. Dooley, & G. Gueudet (Eds.), Proceedings of CERME10 (pp. 916–923). Dublin, Ireland: ERME. Carreira, S., & Baioa, A. M. (2018). Mathematical modelling with hands-on experimental tasks: on the student’s sense of credibility. ZDM Mathematics Education, 50(1-2), 201–215. Carreira, S., Barquero, B., Kaiser, G., & Cooper, J. (2019). Introducing CERME’s Thematic Working Group 6 –Applications and Modelling. EMS Newsletter, 48–49. Carrejo, D. J., & Marshal, J. (2007). What is mathematical modelling? Exploring prospective teachers’ use of experiments to connect mathematics to the study of motion. Mathematics Education Research Journal, 19(1), 45–76. Dym, C. L. (2004). Principles of mathematical modeling (2nd ed.). Amsterdam, the Netherlands: Elsevier. English, L., & Mousoulides, N. (2011). Engineering-based modelling experiences in the elementary and middle classroom. In M. Khine, & I. Saleh (Eds.), Models and modeling: Cognitive tools for scientific enquiry (pp. 173–194). Dordrecht, the Netherlands: Springer. Isa, S. S., & Liem, A. (2014). Classifying physical models and prototypes in the design process: A study on the economical and usability impact of adopting models and prototypes in the design process. In D. Marjanovic, M. Storga, N. Pavkovic, & N. Bojcetic (Eds.), Proceedings of the 13rd International Design Conference (pp. 2071- 2082). Glasgow, Scotland: The Design Society. Laudon, K., & Laudon, J. (2012). Management information systems (12th ed.). London, England: Pearson Education. Levy, L. F. (2016). Pode-se aprender matemática através da investigação de casos particulares? Alexandria, 9(2), 287–301. Peirce, C. S. (1972). Semiótica e Filosofia: textos escolhidos (1st ed.). São Paulo, Brazil: Cultrix. Sharma, S. (2013). Qualitative approaches in mathematics education research: Challenges and possible solutions. Education Journal, 2(2), 50–57. Silva, K. A. P., & Almeida, L. M. W. (2015). Caminhos do significado em atividades de modelagem matemática: um olhar sobre os interpretantes. Bolema, 29(52), 568–592. Svarovsky, G., & Shaffer, D. (2007). Soda constructing knowledge through exploratoids. Journal of Research in Science Teaching, 44(1), 133–153. Varchol, P., & Levický, D. (2007). Using of hand geometry in biometric security systems. Radioengineering, 16(4), 82–87. Wilhelmi, M. R., Godino, J. D., & Lacasta, E. (2007). Didactic effectiveness of mathematical definitions. The case of the absolute value. International Journal of Mathematics Education, 27(2), 3–9. Yin, R. K. (2010). Estudo de caso: planejamento e métodos (4th ed). Porto Alegre, Brazil: Bookman.