Interactions between epistemologies of mathematics and educational systems – the emergence of mathematical communities according to cultures and states in 19th century Europe
Tipo de documento
Autores
Lista de autores
Schubring, Gert
Resumen
This paper discusses the generally shared conviction of mathematics being a universal science, with a “common language” and a “shared research agenda”. These convictions are discussed in particular with regard to assertions in the volume “Mathematics Unbound” of 2002, where it is maintained that national mathematical communities emerged during the 19th century but converged to a universal community during the 20th century. Emphasising the key importance of the national educational structures, it is argued here that national communities emerged already in the wake of Humanism. The differing “languages” for conceiving of negative numbers provide revealing examples for showing epistemologies related to different educational structures. And a fundamentalist “language” in Italy shows the alignment of mathematics education with classicist conceptions of education. Connecting with the conception of “national styles”, the paper proposes approaches to understand characteristics marking the differences between national mathematical communities as tied to social and cultural values and revealed by the education systems. In the conclusion, the claim of an emerged international community is discussed.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Epistemología | Etnomatemática | Historia de la Educación Matemática | Semiótica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Betti, E. & Francesco B. (1867). Gli Elementi d’Euclide com note aggiunte ed esercizi ad uso de’ Ginnasi e de‘ Licei. Firenze: Monnier (Libri I-III 1867, IV-VI 1868, XI-XII e Appendice 1868). Bézout, É. (1781). Cours de Mathématiques à l’usage des Gardes du Pavillon et de la Marine. Troisième Partie. Contenant l’Algebre et l’application de cette science à l’Arithmétique et la Géométrie Paris: Pierres. Crelle, A. L. (1822). “Vorrede”, Adrien Marie Legendre. Die Elemente der Geometrie und der ebenen und sphärischen Trigonometrie. Aus dem Französischen übersetzt und mit Anmerkungen begleitet, A. L. Crelle (Herausgeber), Berlin: Rücker, iii-iv. Förstemann, W. A. (1817). Ueber den Gegensatz positiver und negativer Größen. Nordhausen: Happach. Frend, W. (1796). Principles of Algebra. 2 vols. London. Hauff, J K. F. (1800). Vorwort. In Lazare Carnot, Betrachtungen über die Theorie der Infinitesimalrechnung, von dem Bürger Carnot. Aus dem Französischen übersetzt und mit Anmerkungen und Zusätzen begleitet von Johann Karl Friedrich Hauff (Frankfurt am Main: Jäger. Hindenburg, C. F. (1795). Allgemeine Darstellung des Polynomialtheorems nach de Moivre und Boscovich, nebst [...]. Archiv der reinen und angewandten Mathematik, Erster Band, viertes Heft, pp. 385–384. Kästner, A. G. (1792). Anfangsgründe der Arithmetik, Geometrie, ebenen und sphärischen Trigonometrie, und Perspectiv. Der mathematischen Anfangsgründe 1ten Theils erste Abtheilung. Fünfte vermehrte Auflage (Göttingen: Vandenhoek und Ruprecht. Kuhn, T. (1962). The Structure of scientific revolutions. Chicago, Ill.: University of Chicago Press Lacroix, S.-F. (1803). Éléments d’Algèbre. Troisième édition, revue et corrigée. Paris: Courcier, an XI = 1803. Legendre, A.-M. (1794). Éléments de géométrie. Paris: Imprimérie..., an II (= 1794) Luhmann, N. (1984). Soziale Systeme – Grundriß einer allgemeinen Theorie. Frankfurt: suhrkamp. Luhmann, N. (1990). Wissenschaft der Gesellschaft. Frankfurt: suhrkamp. Malaty, G. (1999). The Third World mathematics education is a hope for the world mathematics education development in the 21st century. In Rogerson, A. (ed.), Proceedings of the international conference mathematics education into the 21st century, pp. 231–240. Cairo. Maseres, (1758). Dissertation on the Use of the Negative Sign in Algebra. London: Richardson/Payne. Metternich, M. (1811). Anfangsgründe der Algebra von Sylvestre-François Lacroix. Nach der siebten Auflage übersetzt und mit erläuternden Anmerkungen und Zusätzen vermehrt. Mainz: Kupferberg. Metz, A. (1804). Handbuch der Elementar-Arithmetik in Verbindung mit der Elementar- Algebra (Bamberg, Würzburg: J. A. Göbhardt. Parshall, K. H. & Rice, A. (eds.) (2002). Mathematics Unbound. The Evolution of an International Mathematical Research Community, 1800-1945. Providence, RI: American Mathematical Society, London Mathematical Society. Prouhet, E (1871). Préface. In Sylvestre-François Lacroix. Éléments d’Algèbre. Vingt- troisième édition, revue, corrigée et annotée par E. Prouhet. Paris: Gauthier-Villars. Rommevaux, S., Maryvonne S. & Massa Esteve, M.R (éds.). (2012). Pluralité de l’Algèbre à la Renaissance. Paris: Honoré Champion. Scarpis, U. (1911). L’insegnamento della matematica nelle scuole classiche. I. I successivi programmi dal 1867 al 1910, Commisssione Internazionale dell’Insegnamento Matemático, Atti della Sottocommissione Italiana. Roma. Schubring, G. (1989). La réforme du savoir savant: la contribution de Condorcet au premier concours des 'livres élémentaires', Condorcet, Mathématicien, économiste, philosophe, homme politique, éds. Pierre Crépel, Christian Gilain. Paris: Minerve , 44-51. Schubring, G. (1996). Changing cultural and epistemological views on mathematics and different institutional contexts in 19th century Europe. L'Europe mathématique - Mythes, histoires, identités. Mathematical Europe - Myths, History, Identity, eds. Catherine Goldstein, Jeremy Gray, Jim Ritter (Paris: Éditions de la Maison des Sciences de l'Homme, 1996), 361-388. Schubring, G. (2002). Aspetti istituzionali della matematica. Storia della scienza, ed. Sandro Petruccioli, Vol. VI: L'Etá dei Lumi. Roma: Istituto dell'Enciclopedia Italiana, 366-380. Schubring, G. (2007). Documents on the mathematical education of Edmund Külp (1800- 1862), the mathematics teacher of Georg Cantor. ZDM The International Journal for Mathematics Education, 2007, 39: 107-118. Schubring, G. (2005). Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer. Schubring, G. (2009). The way from the combinatorial school to the reception of the Weierstrassian analysis“. Dalla pecia all'e-book. Libri per l'Università: stampa, editoria, circolazione e lettura. Atti del Convegno internazionale di studi, Bologna, 21-25 ottobre 2008, a cura di Gian Paolo Brizzi, Maria Gioia Tavoni. Bologna: CLUEB, 2009, pp. 431-442. Schubring, G. (2012). Lettres de mathématiciens français à Weierstraß – documents de sa réception en France“, L’aventure de l’analyse, de Fermat à Borel. Mélanges en l’honneur de Christian Gilain, éd. Suzanne Féry. Nancy: Presses Universitaires de Nancy, 567-594. Schubring, G. (2020). The development of forms to study mathematics. “Dig where you stand” 6. Proceedings of the Sixth International Conference on the History of Mathematics Education, September 16-20, 2019, at the CIRM (Luminy) France, eds. Évelyne Barbin, Kristín Bjarnadóttir, Fulvia Furinghetti, Alexander Karp, Guillaume Moussard, Johan Prytz, Gert Schubring & Harm Jan Smid. Münster: WTM Verlag, 289-302. Stichweh, R. (1984). Zur Entstehung des modernen Systems wissenschaftlicher Disziplinen. Physik in Deutschland, 1740–1890. Frankfurt/M.: suhrkamp. Vita, V. (1986). I programmi di matematica per le scuole secondarie dall’unita d’Italia al 1986. Rilettura storico-critica. Bologna.