Developing competencies to teach functions with GeoGebra from a holistic approach: a case study with prospective teachers
Tipo de documento
Autores
Lista de autores
Gómez-Chacón, Inés María y Joglar, Nuria
Resumen
Integrating technology into Math lessons is a complex issue that has to be addressed from a holistic viewpoint that takes into account different interrelated components. In this article, we propose the study of the development of four components (cognitive, didactic, technical and affective), and of their interactions, working with several groups of prospective teachers during 2 years and conducting a case study with selected students for deeper analyses. The research strategy is framed inside a Design- Based Research (DBR). As part of the methodology used in the pre-service teacher training, multimedia learning scenarios to help the trainees learn how to teach exponential and logarithmic functions with GeoGebra are developed and implemented.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Competencias | Estudio de casos | Inicial | Software
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
ANDRESEN M. & MISFELDT M. (2009). Essentials of teacher training sessions with GeoGebra. International Journal for Technology in Mathematics Education, Volume 16 No. 1, pp. 37-43. ARTIGUE, M. (2002). Learning mathematics in a CAS environment: the genesis of a reaction about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7:245274. BAIRRAL, M., GIMENEZ, J. & TOGASHI, E. (2001). Desenvolvimiento profissional docente baseado na Web. Perspectivas para a educaçao geométrica GEPEM 39, pp. 12-21. BENNINSON, A. & GOOS, M. (2010). Learning to Teach Mathematics with Technology: A Survey of Professional Development Needs, Experiences and Impacts. Mathematics Education Research Journal 2010, Vol. 22, No. 1, 31-56. BÖHM, J. (2008). Linking Geometry, Algebra, and Calculus with GeoGebra. TIME 2008 conference, South Africa. COBB, P.; CONFREY, J.; LEHRER, R. & SCHAUBLE, L. (2003). Design Experiments in Educational Research. Educational Researcher, vol. 32, nº 1, pp. 9-13. COLLINS, A., JOSEPH D. & BIELACZYC, K. (2004). Design Research: Theoretical and Methodological Issues. The journal of the learning sciences, V3(1), pp. 15-42. CUBAN, L., KIRKPATRICK, H., & PECK, C. (2001). High access and low use of technologies in high school classrooms: Explaining the apparent paradox. American Educational Research Journal, 38(4), 813-834. DBR Study guide from Graduate Student Resource Hub in Design Research in Education, retrieved April 6, 2010 from http://www.lkl.ac.uk/projects/designresearch/ Design-Based Research Collective (2003). A design-based research; an emerging paradigm for educational inquiry. Educational Researcher, 32(1): 5-8. ELIA, I., et. al. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education, 5, 533-556. ENGBERSEN, A. (2009). Comparison of teaching exponential and logarithmic functions based on mathematics textbook analysis. Teaching Mathematic Computer Science, 7 (2), 297-318. FERNÁNDEZ, M. J., CARBALLO SANTAOLALLA, R. & GALÁN GONZÁLEZ, A. (2010). Faculty attitudes and training needs to respond the new European Higher Education challenges. Higher Education, 60, pp. 101-118. FORGASZ, H. (2006). Factors that encourage or inhibit computer use for secondary mathematics teaching. Journal of Computers in mathematics and science teaching, 25 (1), 77-93. GALBRAITH, P., STILLMAN, G., BROWN, J., & EDWARDS, I. (2007). Facilitating middle secondary modelling competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 130- 140). Chichester, UK: Horwood. GÓMEZ-CHACÓN, I. Mª (2010a). Students’ attitudes to learning mathematics with technology. Enseñanza de las ciencias, 28 (2), pp. 227-244. GÓMEZ-CHACÓN, I. Mª (2010b). The local and the global affective structures in mathematics learnig and the construction of professional identity. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, 272-277. Belo Horizonte, Brazil: PME. GÓMEZ-CHACÓN, I. Mª & KUZNIAK, A. (2010). The geometric work spaces of future teachers in the context of technological and professional knowledge. Proceedings of French-Cypriot Symposium Mathematical Working Space. Université de Paris 7 Diderot, Paris, pp. 97-112. GÓMEZ-CHACÓN, I. Mª & HAINES, C. (2008). Students’ attitudes to mathematics and technology. Comparative study between the United Kingdom and Spain. ICME-11, 11th Internationa Cogress on Mathematical Education (http://tsg.icme11.org/tsg/show/31). GÓMEZ-CHACÓN, I. Mª. & JOGLAR PRIETO, N. (2008). Escenarios multimedia para aprender a enseñar matemáticas con nuevas tecnologías. Estudio de casos. Actas V Congreso Iberoamericano de Docencia Universitaria. Universidad Politécnica de Valencia. GOOS, M. (2009). Reforming mathematics teacher education: Theorising teachers’ and students’ use of technology. In C. Ng & P. Renshaw (Eds.), Reforming learning: Concepts, issues and practice in the Asia-Pacific region (pp. 43-65). New York: Springer. HAINES, C. (1991) Assesment for mathematicians. In M. Niss, W. Blum, I. Huntley, Teaching of mathematical modelling and applications, (pp. 299-305). England: Ellis Horwood. HOHENWARTER, M. & JONES, K. (2007). Ways of linking geometry and algebra: the case of Geogebra. Proceedings of the British Society for Research into Learning Mathematics. University of Northampton, UK: BSRLM, 27 (3). HOHENWARTER, M. & LAVICZA, Z. (2007). Mathematics teacher development with ICT: towards an international Geogebra Institute. Proceedings of the British Society for Research into Learning Mathematics. University of Northampton, UK: BSRLM., 27 (3). HOHENWARTER, M., HOHENWARTER, J., KREIS, Y. & LAVICZA, Z. (2008). Teaching and Learning Calculus with Free Dynamic Mathematics Software GeoGebra. TSG 16: Research and development in the teaching and learning of calculus ICME 11, Monterrey, Mexico 2008. HOYLES, C., LAGRANGE, J., SON, L. H., & SINCLAIR, N. (2006). Digital technologies and mathematics teaching and learning: Rethinking the terrain. Proceedings of the 17th ICMI Study Conference. [CD-ROM]. Hanoi. JENSEN, T. H. (2007). Assessing mathematical modelling competency. In Haines, C., Galbraith, P., Blum, W., & Khan, S. (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 141-148). Chichester, UK: Horwood. JONES, K., LAVICZA, Z., HOHENWARTER, M., LU, A., DAWES, M., PARISH, A. AND BORCHERDS, M. (2009). BSRLM Geometry working group: Establishing a professional development network to support teachers using dynamic mathematics software GeoGebra. Proceedings of the British Society for Research into Learning Mathematics 29(1): 97-102 LABORDE (2001). Integration of technology in the design of geometry tasks with cabrigeometry. International Journal of Computers for Mathematical Learning 6(3), 283–317. LAGRANGE, J.B. (eds) (2009). Genèses d’Usages Professionnels des Technologies chez les Enseignants GUPTEn. GUPTEn Rapport final Septembre 2009. Laboratoire de Didactique André Revuz Université Paris-Diderot. MONAGHAN, J. (2004). Teachers’ Activities in Technology-based Mathematics Lessons. International Journal of Computers for Mathematical Learning, 9(3), 327-357. NISS, M. (2003). Mathematical competencies and the learning of mathematics: The danish KOM project. In Gagatsis, A., & Papastavridis, S. (eds.), 3rd Mediterranean Conference on Mathematical Education (pp. 115-124). Athens, Greece: Hellenic Mathematical Society and Cyprus Mathematical Society. ORTIZ, J., RICO, L. & CASTRO, J. (2007). Organizadores del currículo como plataforma para el conocimiento didáctico. Una experiencia con futuros profesores de matemáticas. Enseñanza de las ciencias, 2007, 25(1), 21–32. PREINER, J. (2008). Introducing Dynamic Mathematics Software to Mathematics Teachers: the Case of GeoGebra. PhD Thesis, Faculty of Natural Sciences, University of Salzburg, Austria. RABARDEL, P. (1999). Eléments pour une approche instrumentale en didactique des mathématiques, conférence. Actes de l'université d'été, Université de Caen. ROBERT, A. & ROGALSKI, J. (2002). Le système complexe et cohérent des pratiques des enseignants de mathématiques: une double approche. Revue Canadienne de l'enseignement des Sciences, des Mathématiques et des Technologies, 2 (4). RUTHVEN, K. & HENNESSY, S. (2002). A practitioner model of the use of computer based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(1), 47-88. TALL, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. ZDM-The International Journal on Mathematics Education, 41 (4) 481– 492. TAPAN, M. S. (2006). Différents types de savoirs mis en oeuvre dans la formation initiale d’enseignants de mathématiques à l’integration de technologies de géométries dynamique. Thèse. Grenoble. TROUCHE, L. (2005). Construction et conduite des instruments dans les apprentissages mathématiques: nécessité des orchestrations. RDM Recherches en didactique des Mathématiques, 25 (1). VILLA, A. & POBLETE, M. (2007). Aprendizaje basado en competencias. Ediciones Mensajero, Universidad de Deusto, Bilbao, Spain. VINNER, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education and Science and Tecnology, 14 (3), 293-305. WALLACE, R. (2004). A framework for understanding teaching with the Internet. American Educational Research Journal, 41, 447-488.