Conhecimento especializado do pedagogo para ensinar geometria: uma proposta considerando a perspectiva semiocognitiva
Tipo de documento
Autores
Lista de autores
Felisbino, Selma y Thadeu, Méricles
Resumen
Para além de todos os conhecimentos necessários à docência, o conhecimento dos processos semiocognitivos envolvidos na aprendizagem da geometria podem fazer-se importantes na condução do trabalho pedagógico. A passagem da maneira normal de olhar uma figura para a forma matemática de vê-la requer a mobilização de operações cognitivas específicas. Analisando-se a concepção do conhecimento pedagógico do conteúdo, proposto por Shulman, e as adaptações feitas por diversos autores, no campo da educação matemática, nos deparamos com a seguinte questão: quais as categorias de conhecimentos necessários ao professor pedagogo para ensinar geometria nos anos iniciais do ensino fundamental? Trata-se de uma pesquisa de cunho qualitativo do tipo análise documental, para propor um modelo de conhecimento especializado para o professor pedagogo ensinar geometria nos anos iniciais do ensino fundamental a partir da literatura existente. Como contribuição, aponta-se a importância e a necessidade do conhecimento dos processos semiocognitivos, presentes na aprendizagem da geometria na condução do seu ensino.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Construcciones geométricas | Contenido | Formas geométricas | Gestión de aula | Semiótica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Almouloud, S. (2007). Fundamentos da Didática da Matemática. Editora da Universidade Federal de Paraná. Ball, D. L.; D. L., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching What Makes It Special? Journal of Teacher Education, 59(5), 389-407. Carrillo, J., Climent, N., Montes, M., Contreras-González, L., Flores-Medrano, E., Escudero Avila, D. I., Vasco Mora, D., Rojas, N., Flores, P., Aguilar-González, Á., Ribeiro, M., & Muñoz-Catalán, M. (2018). The mathematics teacher's specialised knowledge (MTSK) model. Research in Mathematics Education, 20, 236-253. https://www.tandfonline.com/doi/abs/10.1080/14794802.2018.1479981?journalCode=rrme20. Catalán, M. C., Contreras-González, L., Carrillo, J., Rojas, N., Montes, M., & Climent, N. (2015). Conocimiento especializado del profesor de matemáticas (MTSK): un modelo analítico para el estudio del conocimiento del profesor de matemáticas. La Gaceta de la Real Sociedad Matemática Española, 18, 589-605. Curi, E. (2004). Formação de professores polivalentes: uma análise de conhecimentos para ensinar matemática e de crenças e atitudes que interferem na constituição desses conhecimentos. [Tese de Doutorado em Educação Matemática, Universidade Católica de São Paulo]. http://www.educadores.diaadia.pr.gov.br/arquivos/File/2010/artigos_teses/MATEMATICA/Tese_curi.pdf Duval, R. (2004). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Universidade del Valle – Instituto de Educación y Pedagogía. Duval, R. (2005). Les conditions cognitives de l’ apprentissage de la geometrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5-53. https://mathinfo.unistra.fr/irem/publications/adsc/ Duval, R. (2011). Ver e ensinar a Matemática de outra forma: entrar no modo matemático de pensar os registros de representações semióticas. In T. M. M. Campos (org.). (Trad. M. A. Dias). PROEM. Duval, R. (2012a). Registros de representação semiótica e funcionamento cognitivo do pensamento. REVEMAT, 07(2), 266-297. https://doi.org/10.5007/1981-1322.2012v7n2p266. Duval, R. (2012b). Abordagem cognitiva de problemas de geometria em termos de congruência. REVEMAT, 07(1), 118-138. https://periodicos.ufsc.br/index.php/revemat/article/view/19811322.2012v7n1p118/22382. Duval, R. (2015). Mudanças, em curso e futuras, dos sistemas educacionais: Desafios e marcas dos anos 1960 aos anos... 2030! REVEMAT, 10(1), 1-23. https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2015v10n1p1/30037. Duval, R. (2016). Questões epistemológicas e cognitivas para pensar antes de começar uma aula de matemática. REVEMAT, 11(2), 1-78. https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2016v11n2p1/33628 Fiorentini, D. (1995). Alguns modos de ver e conceber o ensino de matemática no Brasil. Zetetiké, 3(4), 1-37. https://doi.org/10.20396/zet.v3i4.8646877 Flores, E., & Carrillo, J. (2014). Connecting a mathematics teacher’s conceptions and specialised knowledge through her practice. In: S. Oesterle, P. Liljedahl, C. Nicol, & D. Allan. Proceedings of the Joint Meeting of PME 38 and PME-NA 36, 3, 81-88. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008) Unpacking Pedagogical Content Knowledge: Teachers´ topic-specific knowledge of studentes. Journal for Tesearch in Mathematics Education, 39(4), 272-400. Hillesheim, S. F., & Moretti, M. T. (2017, out., 4-7). Formação geométrica do professor pedagogo na perspectiva da semiosfera do olhar. [Conferência] VII Congresso Internacional de Ensino da Matemática, 1-12, Canoas, RS. http://www.conferencias.ulbra.br/index.php/ciem/vii/paper/viewFile/6731/3091 Hillesheim, S. F., & Moretti, M. T. (2019, jul., 14-17). A formação matemática do pedagogo nas pesquisas brasileiras: a questão da geometria. [Apresentação de comunicação].