Establecimiento de analogías durante el planteo de problemas matemáticos: reflexiones para el contexto escolar
Tipo de documento
Autores
Lista de autores
Cruz, Miguel
Resumen
Este estudio imbrica dos aspectos importantes que caracterizan el pensamiento matemático: el planteo de nuevos problemas y el uso de analogías. Se parte de una estrategia que explica el proceso de planteo de problemas, estructurada por seis etapas que se interconectan en el plano cognitivo. Mediante un análisis epistémico se explora la naturaleza y la forma en que se establecen analogías durante el proceso de planteo de problemas matemáticos nuevos e interesantes. Los elementos teóricos se ejemplifican con ayuda de paquetes computacionales, y luego se reflexiona acerca de la incidencia del planteo de problemas matemáticos y del razonamiento analógico en el contexto escolar.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Gestión de aula | Planteamiento de problemas | Razonamiento | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
16
Número
59
Rango páginas (artículo)
180-203
ISSN
18150640
Referencias
Abu-Elwan, R. A. (2007). The use of webquest to enhance the mathematical problem- posing skills of pre-service teachers. International Journal for Technology in Mathematics Education, 14(1), 31-39. Akay, H. (2010). The effect of problem posing oriented Analyses-II course on the attitudes toward mathematics and mathematics self-efficacy of elementary prospective mathematics teachers. Australian Journal of Teacher Education, 35(1), 59-75. Barak, M., Ben-Chaim, D., & Zoller, U. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353-369. Bernardo, A. B. I. (2001). Analogical problem construction and transfer in mathematical problem solving. Educational Psychology, 21(2), 137-150. Brown, S. I., & Walter, M. I. (1990). The Art of Problem Posing (2nd ed.). Erlbaum, Hillsdale, New Jersey (1st ed. in 1983). Cai, J., & Hwang, S. (2019). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research (in press). doi: 10.1016/j.ijer.2019.01.001. Cankoy, O. (2014). Interlocked problem posing and children’s problem posing performance in free structured situations. International Journal of Science and Mathematics Education, 12(1), 219-238. Charalambos, C., Kyriakides, L., & Philippou, G. (2003). Testing a comprehensive model for measuring problem solving and problem posing skills of primary pupils. In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th PME, vol. 2 (pp. 205-212). Honolulu: PME. Chen, L., Van Dooren, W., Chen, Q., & Verschaffel, L. (2011). An investigation on Chinese teachers’ realistic problem posing and problem solving ability and beliefs. International Journal of Science and Mathematics Education, 9(4), 919-948. Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. Zentralblatt für Didaktik der Mathematik, 37(3), 149-158. Crespo, S. (2003). Learning to pose mathematical problems: exploring changes in preservice teachers’ practices. Educational Studies in Mathematics, 52(3), 243- 270. Crespo, S., & Sinclair, N. (2008). What makes a problem mathematically interesting? Inviting prospective teachers to pose better problems. Journal of Mathematics Teacher Education, 11(5), 395-415. Cruz, M. (2006a). La Enseñanza de la Matemática a través de la Resolución de Problemas. La Habana: Educación Cubana. Cruz, M. (2006b). A mathematical problem-formulating strategy. International Journal for Mathematics Teaching and Learning. CIMT, University of Plymouth, United Kingdom, http://www.cimt.plymouth.ac.uk/journal/default.htm. Cruz, M. (2019). Aprendiendo a plantear nuevos problemas. Una experiencia con GeoGebra. Acta Latinoamericana de Matemática Educativa, 32(1), 468-477. Cruz, M. (2020). Planteo analógico de problemas matemáticos. Descubriendo relaciones entre el teorema de Walter y el de Morley. Acta Latinoamericana de Matemática Educativa, 33(1) (por aparecer). Cruz, M., García, M. M., Rojas, O. J., & Sigarreta, J. M. (2016). Analogies in mathematical problem posing. Journal of Science Education, 17(2), 84-90. Davis, J. (2013). Student understandings of numeracy problems: Semantic alignment and analogical reasoning. The Australian Mathematics Teacher, 69(2), 19-26. Dunker, K. (1945). On problem solving. Psychological Monographs, 58 (5, whole N.270). Washington, DC: American Psychological Association. English, L. D. (1998). Children’s problem posing within formal and informal context. Journal for Research in Mathematics Education, 29(1), 83-106. English, L. D. (2019). Teaching and learning through tathematical problem posing: commentary. International Journal of Educational Research (in press). doi: 10.1016/j.ijer.2019.06.014. English L. D., Cudmore, D., & Tilley, D. (1998). Problem posing and critiquing: How it can happen in your classroom. Mathematics Teaching in the Middle School, 4(2), 124-129. English, L. D., Fox, J. L., & Watters, J. J. (2005). Problem posing and solving with mathematical modeling. Teaching Children Mathematics, 12(3), 156-163. Ernest, P. (1991). The Philosophy of Mathematics Education. New York: The Falmer Press. Ernest, P. (1998). Social Constructivism as a Philosophy of Mathematics. Albany, New York: State University of New York Press. Fetterly, J. M. (2010). An Exploratory Study of the Use of a Problem-posing of Preservice Elementary Education Teachers’ Mathematical Creativity, Beliefs, and Anxiety. Electronic Theses, Treatises and Dissertations, paper 4468. Florida State University, Tallahassee, FL. Galperin, P. I. (1969). Stages in the development of mental acts. In M. Cole & I. Maltzman (Eds.), A Handbook of Contemporary Soviet Psychology (pp. 249-273). New York: Basic Books, Inc. Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7(2), 155-170. Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306-355. Guetmanova, A. (1989). Logic. Moscow: Progress Publishers. Inhelder, B., & Piaget, J. (1969). Mental images or intellectual operations and their development. In P. Fraisse & J. Piaget (Eds.), Experimental Psychology: Its Scope and Methods, vol. 7 (pp. 87-164). London: Routledge & Kegan Paul. Kar, T., Özdemir, E., Sabri İpek, A., & Albayrak, M. (2010). The relation between the problem posing and problem solving skills of prospective elementary mathematics teachers. Procedia - Social and Behavioral Sciences, 2(2), 1577-1583. Kilpatrick, J. (1987). Problem formulating: where do good problems come from? In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 123-147). Erlbaum, Hillsdale. Lavy, I., & Bershadsky, I. (2003). Problem posing via “what if not?” strategy in solid geometry: A case study. Journal of Mathematical Behavior, 22(4), 369-387. Lavy, I., & Shriki, A. (2010). Engaging in problem posing activities in a dynamic geometry setting and the development of prospective teachers’ mathematical knowledge. Journal of Mathematical Behavior, 29(1), 11-24. Leavy, A., & Hourigan, M. (2019). Posing mathematically worthwile problems: developing the problema-solving skills of prospective teachers. Journal of Mathematics Teacher Education (in press). doi: 10.1007/s10857-018-09425-w. Leontiev, A. N. (1975). Actividad, Conciencia y Personalidad. La Habana: Pueblo y Educación. Lewis, T., Petrina, S., & Hill, A. M. (1998). Problem posing-adding a creative increment to technological problem solving. Journal of Industrial Teacher Education, 36(1), 5- 35. Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science Education, 22(8), 781-796. Lowrie, T. (2002). Designing a framework for problem posing: young children generating open-ended tasks. Contemporary Issues in Early Childhood, 3(3), 354- 364. Morrison R. G., & Cho, S. (2008). Neurocognitive process constraints on analogy: what changes to allow children to reason like adults? Behavioral and Brain Sciences, 31(4), 391-392. NCTM (2000). Principles and Standards for School Mathematics. Reston, Va: NCTM. Novick, L. R., & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(3), 398-415. Ochoa, R. (1998). Problema 18. Siproma, 2(3), 22. Pehkonen, E. (1995). Using open-ended problems in mathematics. Zentralblatt für Didaktik der Mathematik, 27(2), 55-57. Peled, I. (2007). The role of analogical thinking in designing tasks for mathematics teacher education: An example of a pedagogical ad hoc task. Journal of Mathematics Teacher Education, 10(4), 369-379. Poincaré, H. (1914). Science and Method. New York: Thomas Nelson & Sons. Pólya, G. (1954). Mathematics and Plausible Reasoning (vol. I, Induction and analogy in mathematics). Princeton: Princeton University Press. Pólya, G. (1957). How to Solve It: A new Aspect of Mathematical Method (2nd ed.). Princeton: Princeton University Press (1st ed. in 1945). Schlimm, D. (2008). Two ways of analogy: Extending the study of analogies to mathematical domains. Philosophy of Science, 75(2), 178-200. Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28. Silver, E. A., & Cai, J. (1996). Analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27(5), 521-539. Slepkan, Z. I. (1983). Fundamentos Psicológicos y Pedagógicos de la Enseñanza de las Matemáticas: Un Manual Metodológico (en ruso). Kiev: Radianska Shkola. Sternberg, R. J., & Sternberg, K. (2012). Cognitive Psychology (6th ed.). Belmont: Wadsworth Cengage Learning. Stoyanova, E. (2003). Extending students’ understanding of mathematics via problem- posing. Australian Mathematics Teacher, 59(2), 32-40. Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing. In P. Clarkson (Ed.), Technology in Mathematics Education (pp. 518-525). Melbourne: Mathematics Education Research Group of Australasia. Ulam, S. M. (1976). Adventures of a Mathematician. New York: Charles Scribner’s Sons. Vosniadou, S. (1995). Analogical reasoning in cognitive development. Metaphor and Symbolic Activity, 10(4), 297-308. Wang, X., & Liu, D. (2008). Problem posing based on what-if-not strategy. Journal of Mathematics Education, 17(4), 26-29. Weil, A. (1960). De la métaphysique aux mathématiques. Œuvres (pp. 408-412), vol. II, Springer-Verlag. Wilbers, J., & Duit, R. (2006). Post-festum and heuristic analogies. In P. J. Aubuston et al. (Eds.), Metaphor and Analogy in Science Education, 30 (pp. 37-49). Dordrecht: Springer.