Niveles de razonamiento inferencial para el estadístico t-student
Tipo de documento
Lista de autores
Lugo-Armenta, Jesús Guadalupe y Pino-Fan, Luis Roberto
Resumen
En este artículo presentamos una propuesta de niveles progresivos, de lo informal a lo formal, de razonamiento inferencial para el estadístico t-Student, a partir de criterios epistémicos identificados con un estudio de tipo histórico-epistemológico sobre este estadístico y de la investigación desarrollada sobre razonamiento inferencial. Para ello, utilizamos algunas nociones teórico-metodológicas introducidas por el Enfoque Onto-Semiótico del conocimiento y la instrucción matemáticos (EOS), las cuales permitieron tanto identificar y caracterizar diversos significados conferidos al estadístico t-Student, a lo largo de su evolución y desarrollo, como presentar una perspectiva integral de lo que se considera razonamiento inferencial. Los atributos matemáticos de los diversos significados del estadístico t-Student se encuentran fuertemente vinculados a los indicadores de los distintos niveles de razonamiento aquí expuestos. Además, cada nivel se encuentra asociado a un razonamiento inferencial informal, pre-formal o formal. La propuesta de niveles de Razonamiento Inferencial para el estadístico t-Student y sus indicadores, se prevén útiles para el diseño de actividades que promuevan, gradualmente, un razonamiento inferencial formal sobre la base del razonamiento inferencial informal, sobre este estadístico.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Epistemología | Estadística | Historia de la Educación Matemática | Razonamiento | Software
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
35
Número
71
Rango páginas (artículo)
1776-1802
ISSN
19804415
Referencias
AKÉ, L. P. Evaluación y desarrollo del razonamiento algebraico elemental en maestros en formación. 2013. 365f. Tesis (Doctorado en Didáctica de la Matemática) – Facultad de Educación, Universidad de Granada, Granada, 2013. BAKKER, A.; BEN-ZVI, D.; MAKAR, K. An inferentialist perspective on the coordination of actions and reasons involved in making a statistical inference. Mathematics Education Research Journal, Berlin, v. 29, n. 4, p. 455-470, ene. 2017. BAKKER, A.; GRAVEMEIJER, K. Learning to reason about distribution. In: BEN-ZVI, D.; GARFIELD, J. (Eds.). The challenge of developing statistical literacy, reasoning, and thinking. Dordrecht: Kluwer Academic Publishers, 2004. p. 147-168. BEN-ZVI, D.; ARIDOR-BERGER, K. Children’s wonder how to wander between data and context. In: BEN-ZVI, D.; MAKAR, K. (Eds.). The teaching and learning of statistics: international perspectives. New York: Springer, 2016. p. 25-36. CALLINGHAM, R.; WATSON, J. M. The Development of Statistical Literacy at School. Statistics Education Research Journal, Auckland, v. 16, n. 1, p. 181-201, may. 2017. DINOV, I. D.; PALANIMALAI, S.; KHARE, A.; CHRISTOU, N. Randomization-based statistical inference: A resampling and simulation infrastructure. Teaching Statistics, London, v. 40, n. 2, p. 64- 73, abr. 2018. DOERR, H. M.; DELMAS, R; MAKAR, K. A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, Auckland, v. 16, n. 2, p. 86- 115, nov. 2017. EDGEWORTH, F. Y. On methods of ascertaining variations in the rate of births, deaths, and marriages. Journal of Statistical Society of London, London, v. 48, n. 4, p. 628-649, dic. 1885. FISHER, R. A. The goodness of fit of regression formulae, and the distribution of regression coefficients. Journal of the Royal Statistical Society, London, v. 85, n. 4, p. 597-612, jun. 1922. FISHER, R. A. Statistical methods for research workers. 5. ed. Edinburgh: Oliver and Boyd, 1934. FONT, V.; RUBIO, N. V. Procesos matemáticos en el enfoque ontosemiótico. In: CONTRERAS, J. M.; ARTEAGA, P.; CAÑADAS, G. R.; GEA, M. M.; GIACOMONE, B.; LÓPEZ-MARTÍN, M. M. (Eds.). Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Granada: Universidad de Granada, 2017. p. 1-21. GALTON, F. IV. Statistics by intercomparison, with remarks on the law of frequency of error. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: 4a serie, London, v. 49, n. 322, p. 33-46, 1875. GARFIELD, J.; BEN-ZVI, D. Developing students’ statistical reasoning: Connecting research and teaching practice. New York: Springer, 2008. GARFIELD, J.; LE, L.; ZIEFFLER, A.; BEN-ZVI, D. Developing students’ reasoning about samples and sampling variability as a path to expert statistical thinking. Educational Studies in Mathematics, New York, v. 88, n. 3, p. 327-342, mar. 2015. GODINO, J. D.; BATANERO, C. Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, Grenoble, v. 14, n. 3, p. 325-355, 1994. GODINO, J. D.; BATANERO, C.; FONT, V. The onto-semiotic approach to research in mathematics education. ZDM, Berlin, v. 39, n. 1-2, p. 127-135, mar. 2007. GODINO, J. D.; BATANERO, C.; FONT, V. The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, Vancouver, v. 39, n. 1, p. 37- 42, 2019. HARRADINE, A.; BATANERO, C.; ROSSMAN, A. Students and Teachers’ Knowledge of Sampling and Inference. In: BATANERO, C.; BURRILL, G.; READING, C. (Eds.). Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education. Dordrecht: Springer, 2011. p. 235-246. JACOB, B. L.; DOERR, H. M. Statistical Reasoning with the sampling distribution. In: MAKAR, K.; DE SOUSA, B.; GOULD, R. (Eds.). Sustainability in statistics education: Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg: International Statistical Institute, 2014. p. 1-6. KONOLD, C.; MADDEN, S.; POLLATSEK, A.; PFANNKUCH, M.; WILD, C.; ZIEDINS, I.; FINZER, W.; HORTON, N. J.; KAZAK, S. Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, Londres, v. 13, n. 1-2, p. 68-86, ene. 2011. MAKAR, K.; BEN-ZVI, D. The Role of Context in Developing Reasoning about Informal Statistical Inference. Mathematical Thinking and Learning, Londres, v. 13, n. 1-2, p. 1-4, ene. 2011. MAKAR, K.; RUBIN, A. A framework for thinking about informal statistical inference. Statistics Education Research Journal, Auckland, v. 8, n. 1, p. 82–105, may. 2009. MAKAR, K.; RUBIN, A. Learning about statistical inference. In: BEN-ZVI, D.; MAKAR, K.; GARFIELD, J. (Eds.). International handbook of research in statistics education. Switzerland: Springer International, 2018. p. 261-294. MINEDUC. Ministerio de Educación de Chile. Bases Curriculares 3º y 4º medio. Santiago: Unidad de Currículum y Evaluación, 2019. MOLINA, O. J. Sistema de normas que influyen en procesos de argumentación: un curso de geometría del espacio como escenario de investigación. 2019. 511 f. Tesis (Doctorado en Educación Matemática) – Escuela de Postgrado, Universidad de Los Lagos, Osorno, 2019. NOLL, J.; HANCOCK, S. Proper and paradigmatic metonymy as a lens for characterizing student conceptions of distributions and sampling. Educational Studies in Mathematics, New York, v. 88, n. 3, p. 361-383, mar. 2015. PFANNKUCH, M. Reimagining curriculum approaches. In: BEN-ZVI, D.; MAKAR, K.; GARFIELD, J. (Eds.). International handbook of research in statistics education. Switzerland: Springer International, 2018. p. 387-413. PFANNKUCH, M.; ARNOLD, P.; WILD, C. J. What I see is not quite the way it really is: Students’ emergent reasoning about sampling variability. Educational Studies in Mathematics, New York, v. 88, n. 3, p. 343-360, mar. 2015. PFANNKUCH, M.; BUDGETT, S.; FEWSTER, R.; FITCH, M.; PATTENWISE, S.; WILD, C.; ZIEDINS, I. Probability modeling and thinking: What can we learn from practice? Statistics Education Research Journal, Auckland, v. 15, n. 2, p. 11-37, nov. 2016. PFANNKUCH, M.; WILD, C. Towards an understanding of statistical thinking. In: BEN-ZVI, D.; GARFIELD, J. (Eds.). The challenge of developing statistical literacy, reasoning and thinking. Dordrecht: Kluwer Academic Publishers, 2004. p. 17-46. PINO-FAN, L.; GODINO, J. D.; FONT, V. Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education. Dordrecht, v. 21, n. 1, p. 63-94, feb. 2018. READING, C.; REID, J. An emerging hierarchy of reasoning about distribution: From a variation perspective. Statistics Education Research Journal, Auckland, v. 5, n. 2, p. 46-68, nov. 2006. ROSSMAN, A. J. Reasoning about Informal Statistical Inference: One Statistician’s View. Statistics Education Research Journal, Auckland, v. 7, n. 2, p. 5-19, nov. 2008. SOTOS, A. E. C.; VANHOOF, S.; VAN DEN NOORTGATE, W.; ONGHENA, P. Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, London, v. 2, n. 2, p. 98-113, 2007. STOHL LEE, H.; ANGOTTI, R. L.; TARR, J. E. Making comparisons between observed data and expected outcomes: students’ informal hypothesis testing with probability simulation tools. Statistics Education Research Journal, Auckland, v. 9, n. 1, p. 68-96, may. 2010. STUDENT. The probable error of a mean. Biometrika, Oxford, v. 6, n. 1, p. 1-25, mar. 1908. VETTEN, A. D.; SCHOONENBOOM, J.; KEIJZER, R.; OERS, B. The Development of Informal Statistical Inference Content Knowledge of Pre-service Primary School Teachers During a Teacher College Intervention. Education Studies in Mathematics, Amsterdam, v. 99, n. 2, p. 217-234, oct. 2018. WELCH, B. L. The generalization of ‘Student´s’ problem when several different population variances are involved. Biometrika, Oxford, v. 34, n. 1/2, p. 28-35, ene. 1947. WILD, C.; PFANNKUCH, M. Statistical thinking in empirical enquiry. International Statistical Review, Voorburg, v. 67, n. 3, p. 223-248, dec. 1999. ZIEFFLER, A.; GARFIELD, J.; DELMAS, R.; READING, C. A framework to support research on informal inferential reasoning. Statistics Education Research Journal, Auckland, v. 7, n. 2, p. 40–58, nov. 2008.