Interdisciplinarity for learning and teaching mathematics
Tipo de documento
Autores
Lista de autores
Rogora, Enrico y Saverio, Francesco
Resumen
Complex problems need interdisciplinary approaches. Thinking in an interdisciplinary way asks for changes in learning and teaching and hence in our views on pedagogical problems. An interdisciplinary approach could provide a new framework also for dealing with disciplinary didactical problems. In this paper, we propose a methodology which we call globally interdisciplinary laboratories as an effective way to practice interdisciplinary teaching at the high school level. We discuss the possibility of applying this methodology to the learning and teaching of mathematics. Globally interdisciplinary laboratories are designed by a pool of researchers in collaboration with high school teachers of several disciplines and they are delivered in the classroom by a pool of teachers in co-presence. This has been experimented in Italy in many classes which are part of a national educational project called Liceo matematico. In this paper, we discuss the general design principle of a GIL and exemplify the methodology by considering the one we have called educate the sight, which aims at stimulating, within an interdisciplinary framework, intellectual curiosity, the ability to spot the prominent features of a problem and, in mathematics, the ability of conjecturing, which should be one of the fundamental concerns of mathematical teaching, according to Polya’s decalogue for mathematics teachers (POLYA, 1981).
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Aprendizaje | Desde disciplinas académicas | Tipos de metodología
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
35
Número
70
Rango páginas (artículo)
1086-1106
ISSN
19804415
Referencias
AAVV. Licei matematici. Tratto da Benvenuto al Liceo Matematico. 2019. Available in: https://www.liceomatematico.it. Access on: 06/29/2021. ALVARGONZÁLEZ, D. Multidisciplinarity, Interdisciplinarity, Transdisciplinarity, and the Sciences. International Studies in the Philosophy of Science, [s.l.], v. 25, n. 4, p. 387–403, 2011. CAPONE, R.; ROGORA, E.; TORTORIELLO, F. S. La matematica come collante culturale nell’insegnamento. Matematica, Cultura e Società. Rivista dell’Unione Matematica Italiana, Bologna, v. 2, n. 3, p. 293–304, 2017. BACCAGLINI FRANK, A.; DI MARTINO, P.; NATALINI, R.; ROSOLINI, G. Didattica della Matematica, Firenze, Mondadori Università, 2018. DE FINETTI, B. Il saper vedere in matematica. Torino: Loescher, 1967. DE MARCHIS, M.; MENGHINI, M.; ROGORA, E. The importance of extensive teaching in the education of prospective teachers of mathematics. In: 19th Conference of Applied Mathematics, APLIMAT 2020 Proceedings, Bratislava, p. 101-118, 2020. DE VILLIERS, M. D. The role and function of proof in mathematics. Pythagoras, [s.l.], v. 24, p. 17- 24, 1990. FREIRE, P. Pedagogia dell’autonomia. Torino: EGA, 2014. GALLERIE NAZIONALI. Tratto da Gallerie Nazionali Barberini e Corsini. 2020. Available in: https://www.barberinicorsini.org/. Access on: 06/29/2021. IABICHINO, G. Educare lo sguardo, tesi di laurea in matematica. 2019. Dissertation (Magistrale in Matematica) – Sapienza Università di Roma, Dipartimento di Matematica, Rome, 2019. Available in: http://programmi.wdfiles.com/local--files/matematica-e-arte/IABICHINO.pdf. Access on: 06/29/2021. KLINE, M. Mathematics in Western Culture. New York: Oxford University Press, 1953. LAKATOS, I. Proofs and refutations. Cambridge: Cambridge university press, 1976. LLOYD, S. Cyclopedia of Puzzles. New York: The lumb publishing company, 1914. MORIN, E. Une tête bien faite: Repenser la réforme, réformer la pensée. Paris: Éditions du Seuil, 1999. ODIFREDDI, P. G. Il computer di Dio: Pensieri di un matematico impertinente. Milano: Raffaello Cortina, 2000. ORTEGA Y GASSET, J. The revolt of the masses. New York: Norton & Company, 1932. PERROTTA, A. Laboratori interdisciplinari come metodo di insegnamento della matematica. Tratto da Conferenza al Congresso Nazionale dell’Unione Matematica Italiana. 2019. Available in: http://programmi.wdfiles.com/local--files/umi/AnnaP.pdf. Access on: 06/29/2021. POLYA, G. Mathematical Discovery. On understanding, learning and teaching problem solving (Combined edition) New York: John Wiley & Sons, 1981. POPPER, K. Objective knowledge. An evolutionary approach. Oxford: Clarendon Press, 1972. POSSAMAI, E. Un laboratorio per educare lo sguardo. Tratto da Conferenza al Congresso Nazionale dell’Unione Matematica Italiana. 2019. Available in: http://programmi.wdfiles.com/local-- files/umi/ElenaP.pdf. Access on: 06/29/2021. PUZIO, M.; SAVINELLI, E. Educare all’argomentazione. Tratto da Slide della conferenza al Congresso Nazionale dell’Unione Matematica Italiana. 2019. Available in: http://programmi.wdfiles.com/local--files/umi/ElenaMaria.pdf. Access on: 06/29/2021. ROGORA, E. Evaluating and choosing: the role of Mathematics. Lettera Matematica, [s.l.], v. 1, n. 4, p. 161-164, 2014. ROGORA, E. Insegnamento Interdisciplinare. Conferenza all’Università di Camerino. 2018. Available in: http://programmi.wdfiles.com/local--files/matematica-e-arte/Camerino2018.pdf. Access on 06/29/2021 SFARD, A. There is more to discourse than meets the ears: looking at thinking as communicating to learn more about mathematical learning. Educational studies in mathematics, [s.l.], v. 46, p. 13-57, 2001. STYLIANIDES, A. J. Proof and proving in school mathematics. Journal for Research in Mathematics Education, [s.l.], v. 38, n. 3, p. 289-321, 2007. TOROSSIAN, C.; VILLANI, C. 21 Mesures pour l’enseignement des mathématiques. Paris: Ministère de l’Education Nationale, 2018. VASSALLO, V. Lo sguardo, genesi di un’idea per cambiare in profondità l’insegnamento della matematica. 2018. Available in: http://programmi.wdfiles.com/local--files/congresso/Vassallo.pdf. Access on: 06/29/2021.