Fostering representational flexibility in the mathematical working space of rational numbers
Tipo de documento
Autores
Deliyianni, Eleni | Elia, Iliada | Gagatsis, Athanasios | Michael-Chrysanthou, Paraskevi | Panaoura, Areti
Lista de autores
Gagatsis, Athanasios, Deliyianni, Eleni, Elia, Iliada, Panaoura, Areti y Michael-Chrysanthou, Paraskevi
Resumen
The study focuses on the cognitive level of Mathematical Working Space (MWS) and the component of the epistemological level related to semiotic representations in two mathematical domains of rational numbers: fraction and decimal number addition. Within this scope, it aims to explore how representational flexibility develops over time. A similar developmental pattern of four distinct hierarchical levels of student representational flexibility in both domains is identified. The findings indicate that the genesis of the semiotic axis in fraction and decimal addition is not automatic, but a long process of developmental steps that could be referred to as MWS1, MWS2, MWS3, MWS4 (final). There is not a clear and stable correspondence between developmental levels of representational flexibility and school grades. Didactical implications in order to foster representational flexibility in the MWS of fraction and decimal addition are discussed.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Enseñanza | Métodos estadísticos | Numérica | Números racionales | Semiótica
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Volumen
30
Número
54
Rango páginas (artículo)
287-307
ISSN
19804415
Referencias
BARNETT-CLARKE, C. et al. Developing essential understanding of rational number: grades 3 –5. Reston: National Council of Teachers of Mathematics, 2010. BLOCK, D., NIKOLANTONAKIS, K.; VIVIER, L. Registre et praxis numérique en fin de première année de primaire. Annales de Didactiques et de Sciences Cognitives, Strasbourg, v. 17, p. 59-86, 2012. BOULET, G. Didactical implications of children’s difficulties in learning the fraction concept. Focus on Learning Problems in Mathematics, Framingham, v.20, n. 4, p.19–34, jan. 1998. CHARALAMBOUS, C.; PITTA-PANTAZI, D. Drawing on a theoretical model to study students’ understanding of fractions. Educational Studies in Mathematics, Netherlands, v. 64, n.3, p.293-316, mar. 2007. DELIYIANNI, E. et al.. Representational flexibility and problem-solving ability in fraction and decimal number addition: a structural model. International Journal of Science and Mathematics, Netherlands, p. 1-21 (first online), mar. 2015. DUVAL, R. A cognitive analysis of problems of comprehension in learning of mathematics.Educational Studies in Mathematics, Netherlands, v. 61, p. 103- 131, feb. 2006. FANDINO PINILLA M. I. Fractions: conceptual and didactic aspects. Acta Didactica Universitatis Comenianae, Bratislava, v. 7, p. 23-45, 2007. GAGATSIS, A.; DELIYIANNI, E.. Mathematical working space relations with conversions between representations and problem solving in fraction addition. Revista Latinoamericana de Investigación en Matemática Educativa, Cinvestav, v. 17, n. 4-I, p. 249-266, dic. 2014. HATTIE, K. Visible learning: a synthesis of over 800 meta-analyses relating to achievement. New York: Routledge, 2009. IRWIN, K., C. Using everyday knowledge of decimals to enhance understanding. Journal for Research in Mathematics Education, Reston, v. 32, n. 4, p. 399-420, jul. 2001. IUCULANO, T.; BUTTERWORTH, B. Understanding the real value of fractions and decimals. The Quarterly Journal of Experimental Psychology, London, v. 64, n. 11, p. 2088-2098, sep. 2011. KUZNIAK, A. L’ espace de travail mathématique et ses genèses. Annales de didactique et de sciences cognitives, Strasborg, v. 16, p. 9-24, 2011. KUZNIAK, A. Understanding the nature of the geometric work through its development and its transformations. In: SUNG, J. C. (Ed.), selected regular lectures from the 12th international congress on mathematical education. Switzerland: Springer International Publishing, 2015, p. 1-15. KUZNIAK, A.; RICHARD, P. R. Spaces for Mathematical Work. Viewpoints and perspectives, Revista Latinoamericana de Investigación en Matemática Educativa, v. 17, n. 4-I, p. 17-28, dic. 2014. LAMON, S. Presenting and representing from fractions to rational numbers. In: CUOCO A. A.; CURCIO F. R. (Ed.). The role of representation in school mathematics.Boston: NCTM, 2001. p.146-165. LESH, R., POST, T.; BEHR, M. Representations and translations among representations in mathematics learning and problem solving. In: JANVIER C. (Ed.). Problems of representation in the teaching and learning of mathematics.Hillsdale, N.J.: Lawrence Erlbaum Associates, 1987. P.33-40. MICHAEL-CHRYSANTHOU, P.; GAGATSIS, A. Students’ beliefs for formative assessment in mathematics teaching and learning, Nicosia, EAPRIL Conference Proceedings, v. 1, p. 178-193, nov. 2014. RODITI, E. Aider les élèves à apprendre à comparer des nombres décimaux. Nouveaux cahiers de la recherche en éducation, Paris, v. 10, n. 1, p. 5-26, 2007.