Knowledge types used by eighth grade gifted students while solving problems
Tipo de documento
Autores
Lista de autores
Baltacı, Serdal, Yıldız, Avni y Güven, Bülent
Resumen
This study aims to determine how primary school eighth grade (14 years old) gifted students use knowledge types while solving problems. In the context, the data were collected through clinical interviews conducted with three gifted students. The students’ voice recordings during problem solving and the solutions they wrote on the paper formed the data of the study. We found out that gifted students use more algorithmic knowledge and less schema knowledge in the problems that they had to solve. It can be said that the reduced usage of schema knowledge is likely to be a result of the fact that the gifted students produce different solutions using the field knowledge instead of remembering the schemas of similar problems they have encountered before.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Conocimiento | Entrevistas | Necesidades educativas especiales | Resolución de problemas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
28
Número
50
Rango páginas (artículo)
1032-1055
ISSN
19804415
Referencias
AKARSU, F. Üstün yetenekli çocuklar. Ankara: Eduser Yayınları, 2001. AKSU, M. Problem çözme becerilerinin geliştirilmesi. PROBLEM ÇÖZME YÖNTEMI SEMPOZYUMU. Ankara: ODTÜ, 1989. BROUDY, H. What knowledge is of most worth. Educational Leadership, v. 39, n. 8, p. 574-578, May. 1982. CHARLES, R.; LESTER, F. An evaluation of a process-priented instructional program in mathematical problem solving in grades 5 and 7. Journal for Research in Mathematics Education, v. 15, n. 1, p. 15-34, Jan. 1984. DE JONG, T.; FERGUSON-HESSLER, M. G. M. Types and qualities of knowledge. Educational Psychologist, Philadelphia, v. 31, n. 2, p. 105-113, Jun. 1996. DUZAKIN, S. Lise öğrencilerinin problem çözme becerilerinin bazı değişkenler açısından incelenmesi. Yayınlanmamış Yüksek Lisans Tezi. Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Psikolojik Danışma ve Rehberlik Bilim Dalı, Ankara: 2004. ESTES, Z.; WARD, J. B. The emergence of novel attributes in concept modification. Creativity Research Journal, Philadelphia, v. 14, n. 2, p. 149-156, Jun. 2002. GADANIDIS, G.; HUGHES, J.; CORDY, M. Mathematics for gifted students in an arts- and technology-rich setting. Journal for the Education of the Gifted. v. 34, n. 3, p. 397-433, Jul. 2011. GALLAGHER, J. J. Teaching the gifted child. Boston, MA: Allyn and Bacon, Inc. 1975. GAROFALO, J. Mathematical problem preferences of meaning-oriented and number-oriented problem solvers. Journal for the Education of the Gifted. v. 17, n. 1, p. 26-40, Jan. 1993. GEIGER, V.; GALBRAITH, P. Development a diagnostics framework for evaluating student approaches to applied mathematics problems. International Journal of Matematical Education in Science & Technology, v. 29, n. 4, p. 533-560, Jul. 1998. GENTNER, D. The mechanisms of analogical learning. In: VOSNIADOU S.; ORTONY A. (Ed.).Similarity and analogical reasoning. New York: Cambridge University Press. 1989. p. 199-241. GUVEN, B. Öğretmen adaylarının küresel geometri anlama düzeylerinin karakterize edilmesi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye: Trabzon, 2006. HEİNZE, A. Differences in problem solving strategies of mathematically gifted and non-gifted elementary students. International Education Journal, Australia, v. 6, n. 2, p. 175-183, May. 2005. HONG, E. Mental models in word problem solving: An analysis of Korean elementry students. Paper Presented at the Annual Meeting of the American Educational Research Association, Atlanta, 1993 JOHNSEN, S. K. Definitions, models, and characteristics of gifted students. In: S. K. Johnsen (Ed.). Identifying gifted students: A practical guide. Waco, TX: Prufrock Press, 2004. p.1-22. KARATAS, I. 8.sınıf öğrencilerinin problem çözme sürecinde kullanılan bilgi türlerini kullanma düzeyleri. Yayınlanmamış Yüksek Lisans Tezi. Trabzon: Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2002. KARATAS, I.; GUVEN, B. Problem çözme davranışlarının değerlendirilmesinde kullanılan yöntemler: Klinik mülakatın potansiyeli, ilköğretim-online, v. 2, n. 2, p. 2-9, Jun. 2003: Disponível em: Acess en: [2013, Nisan 16] KESAN, C.; KAYA, D.; GUVERCIN, S. The effect of problem posing approach to the gifted student’s mathematical abilities. International Online Journal of Educational Sciences, v. 2, n. 3, p. 677-687, Dec. 2010. KINTSCH, W.; GREENO, J. G. Understanding and solving word arithmetic problems. Psychological Review, Washington, v. 92, n. 1, p. 109-129, Jan. 1985. KNEPPER,W.; OBRZUT, E. J.; COPELAND, P. E. Emotional and social problem-solving thinking in gifted and average elementary school children. The journal of Genetic Psychology, v. 142, n. 1, p.25-30, Sep. 1983. KROLL, D. L.; MILLER, T. Insights from research on mathematical problem solving in the middle grades. In: D.T.Owens (Ed.). Research ideas for the classroom: Middle grades mathematics, NY: Macmillan, 1993. p. 58-77 LESTER, F. K.; KROLL, D. L. Assessing student growth in mathematical problem solving. In: G.Kulm (Ed.). Assessing Higher Order Thinking in Mathematics.Washington, DC: American Association for the Advancement of Science, 1990. p.53-70 LESTER, F. K. Musing about mathematical problem solving researchs: 1970-1994. Journal for Research in Mathematics Education, v. 25, n. 6, p. 660-675, Dec.1994. LOW, R.; OVER, R. Detection of missing and irrelevant information within algebraic story problems.British Journal of Educational Psychology, v. 59, n. 3, p. 296-305, Nov. 1989. LOW, R. & OVER, R. Hierarchical ordering of schematic knowledge relating to area of rectangle problems, Journal of Educational Psychology, Washington, v. 84, n. 1, p. 62-69, Mar. 1992. MACGREGOR, M.; STACEY, K. Cognitive models underlying students' formulation of simple linear equations. Journal for Research in Mathematic Education, v. 24, n. 3, p. 217-232, May. 1993. MATHAN, S. A.; KOEDINGER, K. R. Fostering the intelligent novice: Learning from errors with metacognitive tutoring. Educational Psychologist. Philadelphia, v. 40, n. 4, p. 257-265, Jun. 2005. MARYLAND, M. Education of gifted and talented, Washington D.C: US Office of Education, 1972. MAYER, R. E. The psychology of mathematical problem solving. In: F.K. Lester; Garofalo (Ed.). Mathematical Problem Solving: Issues in Research (1-13). Philadelpia: Franklin Institute Press, 1982a. p. 1-13. MAYER, R. E. Different problem-solving strategies for algebra word and equation problems. Journal of Experimental Psychology: Learning, Memory and Cognition, Washington, v. 8, n. 5, p. 448- 462, Sep. 1982b. MAYER, R. E. Cognition and instruction: Their historic meeting within educational psychology.Journal of Educational Psychology, Washington, v. 84, n. 4, p. 405-412, Dec. 1992. MAYER, R. Mathematical problem solving. In Mathematical Cognition, (Ed.). Royer J. Greenwich, CT: Information Age, 2003. MILLER R. C. Discovering mathematical talent. (ERIC Digest No. E482) ERIC Clearinghouse on Handicapped and Gifted Children Reston VA, 1990. PEHKONEN, E. Problem solving in mathematics-introduction, Zentrallblatt fur Didaktik der Mathematic (ZDM), v. 23, n. 1, p. 1-4, Feb. 1991. PHYE, G. D. Inductive problem solving: Schema inducement and memory-based transfer, Journal of Educational Psychology, Washington, v.82, n. 4, p. 826-831, Dec. 1990. RENZULLI, J. S. What makes giftedness? Reexamining a Definition Phi Delta Kappan, v. 60, n. 4, p. 180-184, Nov. 1978. RILEY, M. S.; GREENO, J. G. Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, Philadelphia, v. 5, n. 1, p. 49-101, Dec. 1988. SIMON, H. A. Problem solving and education. In: D.T. TUMA; F. REIF (Ed.). Problem solving and education: Issues in teaching and learning. Hillsdale, N.J.: Erlbaum, 1980. SOWELL, E. J., ZEIGLER, A. J., BERGWELL, L. & CARTWRIGHT, R. M. Identification anddescription of mathematically gifted students: A review of empirical research. Gifted Child Quarterly, v. 34, n. 4, p. 147-154, Fall.1990. SRIRAMAN, B. Mathematical giftedness, problem solving, and the ability to formulate generalizations: The problem solving experiences of four gifted students. The Journal of Secondary Gifted Education, v. 14, n. 3, p. 151-165, Mar. 2003. STACEY, K.; MAC GREGOR, M. Learning the algebraic method of solving problems. Journal of Mathematical Behavior, v. 18, n. 2, p. 149-167, Feb. 2000. STAKE, R. E. The Logic of The Case Study. Mimeo: University of Illinois at Urbana, Champaign, 1976. SHEFFIELD, L. J. Extending the challenge in mathematics: Developing mathematical promise in K–8 students. Thousand Oaks, CA: Corwin Press, 2003. STEINER, H. H. A microgenetic analysis of strategic variability in gifted and averageability children. Gifted Child Quarterly, v. 50, n. 1, p. 62-74, Winter, 2006. SWANSON, H. L., COONEY, J. B.; BROCK, S. The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, v. 55, n. 3, p. 374-395, Jun. 1993. TACONİS, R. Understanding based problem solving. Unpuplished PhD thesis, University of Eindhoven, the Netherlands, 1995. YILDIZ, A. Ders imecesinin matematik öğretmenlerinin problem çözme ortamlarinda öğrencilerinin üstbilişlerini harekete geçirmeye yönelik davranişlarina etkisi, Yayınlanmamış Doktora Tezi, Karadeniz Teknik Üniversitesi Eğitim Bilimleri Enstitüsü, Türkiye: Trabzon, 2013. WİECZERKOWSKİ, W., CROPLEY, A. J. & PRADO, T. M. Nurturing talents/gifts in mathematics. In: HELLER K. A.; MONKS F. J.; STERNBERG R. J.; SUBOTNIK R. F. (Ed.). International handbook of giftedness and talent education. Oxford, United Kingdom: Pergamon, 2000. p. 413- 425.