Linking inquiry and transmission in teaching and learning mathematics and experimental sciences
Tipo de documento
Lista de autores
Godino, Juan D., Batanero, Carmen, Cañadas, Gustavo y Contreras, José Miguel
Resumen
Different theories assume that the learning of mathematics and sciences should be based on constructivist methods, where the students inquire about problem – situations and assign a facilitator role to the teacher. From a contrasting view, other theories advocate for giving a more central role to the teacher, which involves the explicit transmission of knowledge and the students’ active reception. In this paper, we reason that the optimization of learning requires adopting an intermediate position between these two extreme models, because of the complex dialectic between the students’ inquiry and the teacher’s transmission of knowledge. We base our position on a model with anthropological and semiotic assumptions about the nature of mathematical and scientific objects, as well as on the structure of human cognition.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Desde disciplinas académicas | Otro (aprendizaje) | Otro (enseñanza) | Reflexión sobre la enseñanza | Semiótica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
18
Número
4
Rango páginas (artículo)
29-47
ISSN
21787727
Referencias
ALFIERI, L.; BROOKS, P. J.; ALDRICH, N. J.; TENENBAUM, H. R. Does discoverybased instruction enhance learning? Journal of Educational Psychology, v.103, n.1, p.1-18. 2011. ARTIGUE, M.; BLOMHØJ, M. Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, v.45, p.797–810, 2013. AUSUBEL, D. P. Adquisición y retención del conocimiento. Una perspectiva cognoscitiva. Barcelona: Paidos, 2002. BOGHOSSIAN, P. Behaviorism, Constructivism, and Socratic pedagogy. Educational Philosophy and Theory, v.38, n.6, p.713-722, 2006. BROUSSEAU, G. Theory of didactical situations in mathematics. Dordrecht: Kluwer, 2002. CHEVALLARD, Y. L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, v.19, n.2, p.221-266, 1999. CHEVALLARD, Y. Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm. Lecture at the Twelfth International Congress of Mathematics Education, Seoul. July 2012.http://www.icme12.org/upload/submission/1985_F.pdf. 2013. D’AMORE, B.; FONT, V.; GODINO, J. D. La dimensión metadidáctica en los procesos de enseñanza y aprendizaje de las matemáticas. Paradigma, v. XXVII, n. 2, p.49-77. 2007. DORIER, J. L.; GARCÍA, F. J. Challenges and opportunities for the implementation of inquiry-based learning in day-to-day teaching. ZDM The International Journal on Mathematics Education, v. 45, p.837–849, 2013. DUVAL, R. Sémiosis et pensée: registres sémiotiques et apprentissages intellectuels. Berne, Switzerland: Peter Lang, 1995. ENGLISH, L.; SRIRAMAN, B. Problem solving for the 21st century. In: B. SRIRAMAN Y L. ENGLISH (Eds.). Theories of mathematics education, Heidelberg: Springer-Verlag, 2010. p.263-289. ERNEST, P. Varieties of constructivism: Their metaphors, epistemologies, and pedagogical implications. Hiroshima Journal of Mathematics Education, v. 2, p.1-14. 1994. FREUDENTHAL, H. Mathematics as an educational task. Dordrecht: Reidel, 1973. FREUDENTHAL, H. Revisiting mathematics education. China lectures. Dordrecht: Kluwer, 1991. FONT, V.; GODINO, J. D.; GALLARDO, J. The emergence of objects from mathematical practices. Educational Studies in Mathematics, v.82, p.97–124, 2013. FOX, R. Constructivism examined. Oxford Review of Education, v.27, n.1, p.23-35, 2001. GODINO, J. D. Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, n.11, p.111-132, 2013. GODINO, J. D.; BATANERO, C.; FONT, V. The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, v.39, n. 1-2, p.127-135, 2007. GODINO, J. D.; CONTRERAS, A.; FONT, V. Análisis de procesos de instrucción basado en el enfoque ontológico semiótico de la cognición matemática. Recherches en Didactique des Mathematiques, v.26, n.1, p.39-88, 2006. GODINO, J. D.; FONT, V.; WILHELMI, M. R.; LURDUY, O. Why is the learning of elementary arithmetic concepts diffi cult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, v.77, n.2, p.247-265, 2011. GODINO, J. D.; RIVAS, H.; ARTEAGA, P.; LASA, A.; WILHELMI, M. R. Ingeniería didáctica basada en el enfoque ontológico – semiótico del conocimiento y la instrucción matemáticos. Recherches en Didactique des Mathématiques, v.34, n.2/3, p.167-200, 2014. HIEBERT, J. S.; GROUWS, D. A. The effects of classroom mathematics teaching on students’ learning. In: J. F. K. LESTER (Ed.). Second handbook of research on mathematics teaching and learning. Reston, VA: National Council of Teacher of Mathematics, 2007. p.371-404. HUDSON, P.; MILLER, S. P.; BUTLER, F. Adapting and merging explicit instruction within reform-based mathematics classrooms. American Secondary Education, v.35, n.1, p.19-32, 2006. JONASSEN, D. H. Objectivism vs. constructivism: Do we need a new philosophical paradigm? Educational Technology Research & Development, v.39, n.3, p.5-14, 1991. KIRSCHNER, P. A.; SWELLER, J.; CLARK, R. E. Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problembased, experiential, and inquiry-based teaching. Educational Psychologist, v.41, n.2, p.75-86, 2006. MURPHY, P.; MCCORMICK, R. Problem solving in science and technology education. Research in Science Education, v.27, n.3, p.461-481, 1997. NATIONAL COUNCIL of Teachers of Mathematics. Principles and standards for school mathematics. Reston, VA: Author, 2000. RENSHAW, P. D. Dialogic learning, teaching and instruction. Theoretical roots and analytical frameworks. In: J. van der Linden & Peter Renshaw (Eds.). Dialogic learning shifting perspectives to learning, instruction, and teaching. Dordrecht: Kluwer, 2004. p.1-15. RADFORD, L. Three key concepts of the theory of objectifi cation: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, v.2, n.1, p.7-44. 2013. SCHOENFELD, A. H. Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In: D. GROUWS (Ed.). Handbook of research on mathematics teaching and learning. New York: MacMillan, 1992. p.334–370. STEELE, M. M. Teaching students with learning disabilities: Constructivism of behaviorism? Current Issues in Education, v.8, n.10, 2005. STEPHAN, M. Learner-centered teaching in mathematics education. In: S. Lerman (Ed.). Encyclopedia of Mathematics Education. Berlin: Springer, 2014. SWELLER, J.; KIRSCHNER, P. A.; CLARK, R. E. Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, v.42, n.2, p.115-121, 2007. VAN DEN HEUVEL-PANHUIZEN, M. Mathematics education in the Netherlands: A guided tour. Freudenthal Institute. CR-ROM for ICME9. Utrecht: Utrecht University, 2000. VYGOTSKY, L. S. Pensamiento y lenguaje. [Obras escogidas II, p.9-287]. Madrid: Visor, 1993. 1934. WITTGENSTEIN, L. Philosophical investigations. New York, NY: The MacMillan Company, 1953.