Mathematical reasoning fostered by (fostering) transformations of rational number representations
Tipo de documento
Lista de autores
Morais, Cristina, Serrazina, Lurdes y Ponte, João Pedro da
Resumen
In this article we aim to understand the transformations of rational number representations carried out by students and their mathematical reasoning processes. We report part of a Design Based Research, within which an intervention was carried out in a class with 25 students and their teacher, in grades 3 and 4. We analyze six classroom episodes in three main moments concerning the construction of understanding of rational numbers. The results indicate that both transformations and mathematical reasoning processes have an intricate and bidirectional relation, one fostering the other. Students carried out treatments and conversions, including conversions between representations as well as conversions by compositions of different representations. Regarding mathematical reasoning processes, students formulated solving strategies, conjectures and justifications. We also conclude that the social interactions within the class were crucial for the students both doing the transformations and engaging in mathematical reasoning processes.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Numérica | Números racionales | Planteamiento de problemas | Razonamiento
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
20
Número
4
Rango páginas (artículo)
552-570
ISSN
21787727
Referencias
Baturo, A. (2000). Construction of a numeration model: A theoretical analysis. In J. Bana & A. Chapman (Eds.) Proceedings 23rd Annual Conference of the Mathematics Education Research Group of Australasia (pp.95–103). Fremantle, WA. Cobb, P., Jackson, K. & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. English & D. Kirshner (Eds.) Handbook of international research in mathematics education (3rd edition, pp.481–503). New York, NY: Routledge. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1), 103–131. Ellis, A. B. (2011). Generalizing-promoting actions: How classroom collaborations can support students’ mathematical generalizations. Journal for Research in Mathematics Education, 42(4), 308–345. Goldin, G. (2003). Representation in school mathematics: A unifying research perspective. In J. Kilpatrick, M.G. Martin & S. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp.275-286). Reston, VA: NCTM. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping students learn mathematics. Washington, DC: National Academy Press. Komatsu, K. (2010). Counter-examples for refinement of conjectures and proofs in primary school mathematics. Journal of Mathematical Behavior, 29, 1–10. Lamon, S. J. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco & F. Curcio (Eds.), The Roles of Representation in School Mathematics – 2001 Yearbook (pp.146–165). Reston, VA: NCTM. Lannin, J. (2005). Generalization and justification: The challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231–258. Lannin, J., Ellis, A. B., & Elliot, R. (2011). Developing essential understanding of mathematical reasoning: Pre-K-Grade 8. Reston, VA: NCTM. Mata-Pereira, J. & Ponte, J. P. (2012). Raciocínio matemático em conjuntos numéricos: Uma investigação no 3.º ciclo. Quadrante, 21(2), 81–110. Mata-Pereira, J. & Ponte, J. P. (2017). Enhancing students’ mathematical reasoning in the classroom: teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96(2), 169–186. Menezes, L., Rodrigues, C., Tavares, F., & Gomes, H. (2008). Números racionais não negativos: Tarefas para o 5.º ano. Lisboa: DGIDC. NCTM (2007). Princípios e normas para a Matemática escolar. Lisboa: APM. Oliveira, P. (2008). O raciocínio matemático à luz de uma epistemologia soft. Educação e Matemática, 100, 3–9. Ponte, J. P. & Serrazina, M. L. (2000). Didáctica da Matemática do 1.º ciclo. Lisboa: Universidade Aberta. Post, T., Cramer, K., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching, and assessing of rational number concepts. In T. Carpenter & E. Fennema (Eds.), Research on the learning, teaching, and assessing of rational number concepts (pp.327–362). Hillsdale, NJ: Lawrence Erlbaum. Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J. (1985). Order and equivalence of rational numbers: A cognitive analysis. Journal for Research in Mathematics Education, 16(1), 18–36. Russel, S. (1999). Mathematical reasoning in the elementary grades. In L. V. Stiff & F. R. Curcio (Eds.), Developing mathematical reasoning in grades K-12 (pp.1–12). Reston, VA: National Council of Teachers of Mathematics. Stylianides, A. J. (2007a). The notion of proof in the context of elementary school mathematics. Educational Studies in Mathematics, 65(1), 1–20. Stylianides, A. J. (2007b). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289–321. Tripathi, P. N. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in the Middle School, 13(8), 438–445. Wang, Y. & Siegler, R. S. (2013). Representations of and translation between common fractions and decimal fractions. Chinese Science Bulletin, 58(36), 4630–4640. Whitenack, J. & Yackel, E. (2008). Construindo argumentações matemáticas nos primeiros anos: A importância de explicar e justificar ideias. Educação e Matemática, 100, 85–88.