Categories to assess the understanding of university students about a mathematical concept
Tipo de documento
Lista de autores
Rodríguez-Vásquez, Flor Monserrat y Arenas-Peñaloza, Jhonatan
Resumen
Background: one of the problems in mathematics education is students’ little understanding of mathematics both at the basic and higher educational levels, which is why we consider essential the design of adequate instruments and methods that can measure understanding about specific concepts. Objective: to assess the understanding of university students of the concept of a real function. Design: the research is qualitative as the attributes of a cognitive construct were analysed and interpreted. Setting and participants: there were 36 students of a degree in mathematics (18-20 years old) whose productions were analysed. All the students had taken the calculus i course. Data collection and analysis: a test of six items related to tasks that involved the concept of function was applied, the data analysis was carried out from the evaluation categories proposed by albert and kim, who consider three categories to assess understanding, those being: the ability to justify, to understand why a particular mathematical statement is true, and to understand where a mathematical rule comes from. Results: the evaluation of the understanding of the concept of function has shown that, in order to achieve a high understanding, not only skills must be developed for the recognition of aspects of the function such as its definition, its discrimination or its application, but the ability to be able to justify such aspects must be considered too. Conclusion: the categories of understanding considered help to strengthen conceptual and procedural understanding, indicating comprehensive understanding.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Cálculo | Comprensión | Instrumentos | Tareas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
1
Rango páginas (artículo)
102-134
ISSN
21787727
Referencias
Albert, L. & Kim, R. (2015). Applying CCSSM Definition of Understanding to Assess Students Mathematical Learning. In: Assessment to Enhance Teaching and Learning (pp. 233-246). National Council of Teachers of Mathematics. Amaya, T. & Sgreccia, N. (2014). Dificultades de los estudiantes de once grado al hacer transformaciones de representaciones de una función. Épsilon: Revista de la Sociedad Andaluza de Educación Matemática “Thales”, 31(88), 21-38. https://thales.cica.es/epsilon/sites/thales.cica.es.epsilon/files/%5Bfield _volumen-formatted%5D/epsilon88_2.pdf Amaya, T., Pino-Fan, L. & Medina R. (2016). Evaluación del conocimiento de futuros profesores de matemáticas sobre las transformaciones de las representaciones de una función. Educación matemática, 28(3), 111-144. https://doi.org/10.24844/EM2803.05 Arizmendi, H., Carrillo, A. & Lara. M. Cálculo. Primer curso nivel superior. Addison-Wesley Iberoamericana. Arnon, I., Cottril, J., Dubinsky, E., Oktaç, A., Roa, S., Trigueros, M. & Weller, K. (2014). APOS Theory. A Framework for Research and Curriculum Development in Mathematics Education. Springer. Bardini, C., Pierce, R., Vincen, J. & King, D. (2014). Undergraduate mathematics students’ understanding of the concept of function. IndoMS-JME, 5(2), 85-107. https://files.eric.ed.gov/fulltext/EJ1079527.pdf Common Core State Standards for Mathematics (2010). National Governors Association Center for Best Practices. Council of Chief State School Officer. http://www.corestandards.org/wpcontent/uploads/Math_Standards.pdf Cuevas, C. & Pluvinage, F. (2017). Revisitando la noción de función real. El cálculo y su enseñanza, 8, 19-35. https://recacym.org/index.php/recacym/article/view/43/25 Delgado, M. L., Codes, M., Monterrubio, M. C. & González, M. T. (2014). El concepto de serie numérica. Un estudio a través del modelo de Pirie y Kieren centrado en el mecanismo “folding back”. Avances de Investigación en Educación Matemática, 6, 25-44. https://doi.org/10.35763/aiem.v1i6.85 Díaz, J. (2013). El concepto de función: ideas pedagógicas a partir de su historia e investigaciones. El Cálculo y su enseñanza, 4, 13-26. https://mattec.matedu.cinvestav.mx/el_calculo/data/docs/Diaz.a535a5 fbaf7a54a6250cf5a0bf132fda.pdf Crespo, C. & Ponteville, C. (2003). El concepto de función: su comprensión y análisis. Acta Latinoamericana de Matemática Educativa, 16(1), 235241. Díaz, M., Haye, E., Montenegro., F. & Córdoba, L. (2015). Dificultades de los estudiantes para articular representaciones gráficas y algebraicas de funciones lineales y cuadráticas. Unión: Revista Iberoamericana de Educación Matemática, 41, 20-38. http://www.fisem.org/www/union/revistas/2015/41/Artigo1.pdf Dreyfus, T. & Eisenberg, T. (1982). Intuitive Functional Concepts: A Baseline Study on Intuitions. Journal for Reseach in Mathematics Education, 13(5). 360-380. Farfán, R. & García, M. (2005). El concepto de Función: Un breve recorrido epistemológico. Acta Latinoamericana de Matemática Educativa, 18, 489-494. Figueiredo, C. & Contreras, L. (2013). A função quadrática: variação, transparência e duas tipologias de exemplos. Avances de Investigación en Educación Matemática, 3, 45-68. https://doi.org/10.35763/aiem.v0i3.62 Flores, J., Neira, V., Carrillo, F. & Peñaloza, T. (2019). Funciones reales de variable real: mediación de la calculadora científica. Acta Latinoamericana de Matemática Educativa, 32 (2), 684-692. https://www.clame.org.mx/documentos/alme32_2.pdf Hiebert, J. & Carpenter, T. P. (1992). Learning and Teaching with Understanding. In: Handbook of Research on Mathematics Teaching and Learning (pp. 65-97). Macmillan. Kastberg, S. E. (2002). Understanding Mathematical Concepts: The Case of the Logarithmic Function. The University of Georgia. Michener, E. R. (1978). Understanding understanding Mathematics. Cognitive Science, 2, 361-383. https://doi:10.1207/s15516709cog0204_3 National Governors Association Center for Best Practices and Council of Chief School Officers (NGA Center and CCSSO). (2010). Common Core State Standards for Mathematics. NGA Center and CCSSO. National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. NCTM. Nickerson, R. S. (1985). Understanding Understanding. American Journal of Education 93(2), 201-239. Ortega, T. & Pecharromán, C. (2014). Errores en el aprendizaje de las propiedades globales de las funciones. Revista de Investigación en Educación, 12(2), 209-221. http://reined.webs.uvigo.es/index.php/reined/article/view/258/305 Pino-Fan, L. R., Parra-Urrea, Y. E. & Castro-Gordillo, W. F. (2019). Significados de la función pretendidos por el currículo de matemáticas chileno. Revista Internacional de Investigación en Educación, 11(23), 201-220. https://doi.org/10.11144/Javeriana.m11-23.sfpc Pirie, S. & Kieren, T. (1994). Growth in mathematical understading: how can we characterise it and how can we represent it? Educational Studies in Mathematics, 26, 165-190. https://doi.org/10.1007/BF01273662 Prada, R., Hernández, C. & Ramírez, P. (2014). Comprensión del concepto de función en los primeros cursos de educación superior. El Cálculo y su Enseñanza, 6(6), 29-44. Schoenfeld, A. H. (2007). What is mathematical proficiency and how can it be assessed? In: Assessing Mathematical Proficiency (pp. 59-74). Cambridge University Press. Sfard, A. (1989). Transition from operational to structural conception: The notion of function revisited. In: Proceedings of the Thirteenth International Conference for the Psychology of Mathematics Education, 3, 151-158. G.R Didactique, CNRS. Sierpinska, A. (1990). Some Remarks on Understanding in Mathematics. For the Learning of Mathematics, 10(3), 24-36. Sierpinska, A. (1992). On understanding the notion of function. In: The concept of function: Aspects of epistemology and pedagogy. Mathematical Association of America. Skemp, R. (1976). Relational Understanding and Instrumental Understanding. Mathematics Teaching, 77, 20-26. Skemp, R. (1980). Psicología del aprendizaje de las Matemáticas. Ediciones Morata S.A. Secretaria de Educación Pública. (2011). Programa de estudio 2011. Guía para el Maestro. Educación Básica. Secundaria. Matemáticas. SEP. Serrano, W. (2007). Concepciones de los estudiantes sobre la inyectividad, sobreyectividad de la función cuadrática y sobre la gráfica de H: R{0}→R definida por h (x)= sen x/x. Sapiens: revista universitaria de investigación, 8(2), 169-186. https://www.redalyc.org/articulo.oa?id=41080211 Silva, L. & Kaiber, C. (2013). Reflexões sobre o ensino de funções sob a perspectiva do enfoque ontossemiótico. Educação matemática em revista, 14(2), 27-36. Vinner, S. (1983). Concept definition, concept image and the notion of function. The International Journal of Mathematical Education in Science and Technology, 14, 293-305. Vinner, S. & Dreyfus, T. (1989). Images and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356-366. Watson, A. & Harel, G. (2013). The role of Teacher’s Knowledge of Functions in their teaching: a conceptual approach with illustrations from two cases. Canadian Journal of Science Mathematics and Technology Education, 13(2), pp. 154-158. http://dx.doi.org/10.1080/14926156.2013.784826 Wilkerson-Jerde, M. H. & Wilensky, U. J. (2011). How do mathematicians learn math?: resources and acts for constructing and understanding mathematic. Educational Studies in Mathematics, 78, 21-43. https://doi.org/10.1007/s10649-011-9306-5