Students’ thinking process when using abductive reasoning in problem solving
Tipo de documento
Lista de autores
Shodikin, Ali, Purwanto, Purwanto, Subanji, Subanji y Sudirman, Sudirman
Resumen
Background: abductive reasoning is the process of making conjectures to explain surprising observations. Although this conjecture is not certain to be true, in solving a problem, this reasoning is very helpful to determine the best solution strategy. Objectives: the study aims to investigate whether all types of abductive reasoning lead to the formation of new schemes. Design: this research used a qualitative approach with a descriptive exploratory design. Setting and participants: a total of 41 students of the research degree in mathematics education programme were involved in solving a task. Then, eight of them were chosen for an in-depth interview, representing the undercoded and overcoded abductive reasoning types. Data collection and analysis: the data collected were the results of the students’ works and task-based interviews. Piaget’s schema theory was used to analyse students' thinking processes using abductive reasoning. The analysis was carried out at all steps of problem solving, namely understanding the problem, devising a plan, carrying out the plan, and looking back. Results: those who carried out overcoded abductive reasoning used this reasoning to determine problem solving strategies. Meanwhile, those who carried out undercoded abductive reasoning used it to determine problem solving strategies as well as to form new schemes. Conclusions: the results showed that students who did abductive reasoning did not always produce new schemes. This study also notes that the truth value of answers from the application of abductive reasoning in problem solving was open and the importance of the look back step to perform accommodation.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Otro (procesos cognitivos) | Razonamiento | Tareas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
2
Rango páginas (artículo)
58-87
ISSN
21787727
Referencias
Apriyani, R., Ramalis, T. R., & Suwarma, I. R. (2019). Analyzing Student’s Problem Solving Abilities of Direct Current Electricity in STEMbased Learning. Journal of Science Learning, 2(3), 85–91. https://doi.org/10.17509/jsl.v2i3.17559 Bellucci, F. (2018). Eco and Peirce on Abduction. European Journal of Pragmatism and American Philosophy, X(X–1). https://doi.org/10.4000/ejpap.1122 Cifarelli, V. V. (2016). The Importance of Abductive Reasoning in Mathematical Problem Solving. In A. Sáenz-Ludlow & G. Kadunz (Eds.), Semiotics as a Tool for Learning Mathematics: How to Describe the Construction, Visualisation, and Communication of Mathematical Concepts (pp. 209–225). SensePublishers. https://doi.org/10.1007/978-94-6300-337-7_10 Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Identifying Kinds of Reasoning in Collective Argumentation. Mathematical Thinking and Learning, 16(3), 181–200. https://doi.org/10.1080/10986065.2014.921131 Delrieux, C. (2004). Abductive inference in defeasible reasoning: A model for research programmes. Journal of Applied Logic, 2(4), 409–437. https://doi.org/10.1016/j.jal.2004.07.003 Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. A. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 198–220). Indiana University Press. Fann, K. T. (1970). Peirce’s Theory of Abduction. Martinus Nijhoff. Gabbay, D. M., & Kruse, R. (Eds.). (2000). Abductive Reasoning and Learning. Springer Netherlands. https://doi.org/10.1007/978-94-0171733-5 Glasersfeld, E. von. (2001). Scheme theory as a key to the learning paradox. In A. Tryphon & J. Vonèche (Eds.), Working with Piaget: Essays in honour of Bärbel Inhelder (pp. 139–146). Psychology Press. Hadi, S., Retnawati, H., Munadi, S., Apino, E., & Wulandari, N. F. (2018). The Difficulties of High School Students In Solving Higher-Order Thinking Skills Problems. Probelms of Education in the 21st Century, 76(4), 520–532. https://doi.org/10.33225/pec/18.76.520 Kwon, Y.-J., Jeong, J.-S., & Park, Y.-B. (2006). Roles of Abductive Reasoning and Prior Belief in Children’s Generation of Hypotheses about Pendulum Motion. Science & Education, 15(6), 643–656. https://doi.org/10.1007/s11191-004-6407-x Magnani, L. (2009). Abductive Cognition (Vol. 3). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03631-6 Magnani, L. (2015). The eco-cognitive model of abduction. Journal of Applied Logic, 13(3), 285–315. https://doi.org/10.1016/j.jal.2015.04.003 Magnani, L. (2016). The eco-cognitive model of abduction II. Journal of Applied Logic, 15, 94–129. https://doi.org/10.1016/j.jal.2016.02.001 Mairing, J. P. (2017). Students’ Abilities to Solve Mathematical Problems According to Accreditation Levels. International Journal of Education, 10(1), 1–11. https://doi.org/10.17509/ije.v10i1.6902 Munawaroh, S., & Fathani, A. H. (2019). Kemampuan Penalaran dan Pemecahan Masalah Matematis Melalui Model Pembelajaran (Air) Menggunakan Media Mind Mapping pada Materi Bilangan Bulat Kelas VII SMP Shalahuddin Malang. Jurnal Penelitian, Pendidikan, dan Pembelajaran, 14(8), 91–99. Norton, A. (2008). Josh’s Operational Conjectures: Abductions of a Splitting Operation and the Construction of New Fractional Schemes. Journal for Research in Mathematics Education, 39(4), 401–430. O’Reilly, C. J. (2016). Creative Engineers: Is Abductive Reasoning Encouraged enough in Degree Project Work? Procedia CIRP, 50, 547–552. https://doi.org/10.1016/j.procir.2016.04.155 Park, J. H., & Lee, K.-H. (2016). How Can Students Generalize the Chain Rule? The Roles of Abduction in Mathematical Modeling. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2331–2352. https://doi.org/10.12973/eurasia.2016.1289a Park, J., & Kim, D.-W. (2017). How can Students Generalize Examples? Focusing on the Generalizing Geometric Properties. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3771–3800. https://doi.org/10.12973/eurasia.2017.00758a Park, J., & Lee, K.-H. (2018). How Can Mathematical Modeling Facilitate Mathematical Inquiries? Focusing on the Abductive Nature of Modeling. Eurasia Journal of Mathematics, Science and Technology Education, 14(9), 1–9. https://doi.org/10.29333/ejmste/92557 Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-x Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281–303. https://doi.org/10.1007/s10649-010-9275-0 Peirce, C. S. (1958). Collected Papers of Charles Sanders Peirce-Charles Sanders Peirce, Charles Hartshorne, Paul Weiss, Arthur W. BurksThoemmes Continuum (1994).pdf. Cambridge, MA: Harvard University Press. Piaget, J. (1950). The psychology of intelligence (M. Piercy & D. E. Berlyne, Trans.). Routledge. Polya, G. (1973). How to Solve It: A New Aspect of Mathematical Method. Princeton University Press. Rismen, S., Juwita, R., & Devinda, U. (2020). Profil Kemampuan Pemecahan Masalah Matematika Siswa Ditinjau Dari Gaya Kognitif Reflektif. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(1), 163–171. https://doi.org/10.31004/cendekia.v4i1.159 Rivera, F. D., & Becker, J. R. (2007). Abduction-Induction (Generalization) Processes of Elementary Majors on Figural Patterns in Algebra. Journal of Mathematical Behavior, 26(2), 140–155. https://doi.org/10.1016/j.jmathb.2007.05.001 Rostika, D., & Junita, H. (2017). Peningkatan Kemampuan Pemecahan Masalah Siswa SD dalam Pembelajaran Matematika dengan Model Diskursus Multy Representation (DMR). EduHumaniora | Jurnal Pendidikan Dasar Kampus Cibiru, 9(1), 35–46. https://doi.org/10.17509/eh.v9i1.6176 Ruggiero, V. R. (2012). Beyond feelings: A guide to critical thinking (9th ed). McGraw-Hill. Sapitri, Y., Utami, C., & Mariyam, M. (2019). Analisis Kemampuan Pemecahan Masalah Matematis Siswa dalam Menyelesaikan Soal Open-Ended pada Materi Lingkaran Ditinjau dari Minat Belajar. Variabel, 2(1), 16–23. https://doi.org/10.26737/var.v2i1.1028 Shodikin, A, Novianti, A., & Sumarno, W. K. (2019). Mathematics pre-service teachers’ thinking process in solving modeling task in differential calculus course. Journal of Physics: Conference Series, 1157, 022127. https://doi.org/10.1088/1742-6596/1157/2/022127 Shodikin, Ali. (2016). Peningkatan Kemampuan Pemecahan Masalah Siswa Melalui Strategi Abduktif-Deduktif Pada Pembelajaran Matematika. Kreano, Jurnal Matematika Kreatif-Inovatif, 6(2), 101–110. https://doi.org/10.15294/kreano.v6i2.3713 Shodikin, Ali. (2017). The Effect of Learning with Abductive-Deductive Strategy on High School Students’ Reasoning Ability. International Journal of Education, 10(1), 67–72. https://doi.org//10.17509/ije.v10i1.8080 Steffe, L. P. (1991). The Learning Paradox: A Plausible Counterexample. In L. P. Steffe (Ed.), Epistemological Foundations of Mathematical Experience (pp. 26–44). Springer. https://doi.org/10.1007/978-14612-3178-3_3 Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior, 20(3), 267–307. https://doi.org/10.1016/S0732-3123(02)00075-5 Steffe, L. P., & Thompson, P. W. (2000). Interaction or Intersubjectivity? A Reply to Lerman. Journal for Research in Mathematics Education, 31(2), 191–209. https://doi.org/10.2307/749751 Subanji. (2015). Teori Kesalahan Konstruksi Konsep dan Pemecahan Masalah Matematika (T. Nusantara, Ed.). Universitas Negeri Malang. Sudirman, Subanji, Sutawidjaja, A., & Muksar, M. (2015). Proses Berpikir Mahasiswa Dalam Mengonstruksi Konsep Komposisi Fungsi. Jurnal Pendidikan Sains, 3(4), 168–178. Velázquez-Quesada, F. R., Soler-Toscano, F., & Nepomuceno-Fernández, Á. (2013). An epistemic and dynamic approach to abductive reasoning: Abductive problem and abductive solution. Journal of Applied Logic, 11(4), 505–522. https://doi.org/10.1016/j.jal.2013.07.002 Viandari, Y. (2013). Proses Berpikir Mahasiswa Pada Pemecahan Masalah yang Berkaitan dengan Materi Kesebangunan Menggunakan Scaffolding [Thesis]. Universitas Negeri Malang. Walton, D. (2014). Abductive reasoning. University of Alabama Press. Wu, A. D., Stone, J. E., & Liu, Y. (2016). Developing a Validity Argument through Abductive Reasoning with an Empirical Demonstration of the Latent Class Analysis. International Journal of Testing, 16(1), 54–70. https://doi.org/10.1080/15305058.2015.1057826