Comparing the didactic-mathematical knowledge of derivative of in-service and pre-service teachers
Tipo de documento
Lista de autores
Castro-Gordillo, Walter Fernando y Pino-Fan, Luis Roberto
Resumen
Background: the knowledge that a mathematics teacher should master has taken an increasing interest in recent years. Very few studies focused on comparing didactic-mathematic knowledge of in-service and pre-service teachers aimed at identifying features of the teachers’ didactic-mathematical knowledge on specific topics that can establish a line between pre-service and in-service teachers’ knowledge for teaching. Objective: the research aims to compare derivative knowledge of preservice and in-service teachers to identify similarities and differences between teachers’ knowledge. Design: this research is a mixed and interpretative study. Settings and participants: the participants were 22 pre-service teachers, and 11 in-service teachers enrolled in a pre-service teacher education programme and a master’s programme, respectively. Data collection and participants: data were collected based on a questionnaire designed purposefully for the study. Results: the results show that preservice teachers lack both epistemic derivative knowledge, while in-service teachers not only have this knowledge but relates it to its use in teaching. Pre-service teachers may not be making sense of the concept of derivative means, much less related to teaching. Conclusions: the insufficiencies found in pre-service teachers’ knowledge justify the pertinence to design specific formative cycles to develop prospective teachers’ epistemic facet of didactic-mathematical knowledge. It is recommended that both in-service and pre-service teachers discuss activities in which they can identify and reflect on possible mistakes and errors made by students. The development of these formative cycles should consider the complexity of the global meaning of the derivative.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Continua | Desarrollo del profesor | Gestión de aula | Inicial | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Educación superior, formación de pregrado, formación de grado | Formación en posgrado
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
3
Rango páginas (artículo)
34-99
ISSN
21787727
Referencias
Akkoç, H., Bingolbali, E., & Ozmantar, F. (2008). Investigating the technological pedagogical content knowledge: A case of derivative at a point. In O. Figueras, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of the 32nd Conference of the International Group for the Psychology of Mathematics Education, and the XXX North American Chapter (Vol. 2, pp.17-24). PME. Amit, M. & Vinner, S. (1990). Some misconceptions in calculus. Anecdotes or the tip of an iceberg? En G. Booker, P. Cobb y T. de Mendicuti (Comps.) Proceedings of the fourteenth PME Conference, vol. 1 (pp. 3-10). Comité de Programa. An, S. & Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analysis misconceptions in homework. International Journal of Science and Mathematics Education, 10, 717-753. Asiala, M., Cottrill, J., Dubinsky, E. & Schwingendorf, K. (1997). The development of students’ graphical understanding of the derivate. Journal of Mathematical Behavior, 16, 399-431. Badillo, E. (2003). La derivada como objeto matemático y como objeto de enseñanza y aprendizaje en profesores de matemáticas de Colombia. Ph.D. Thesis, Universitat Autònoma de Barcelona, Spain. Badillo, E., Azcárate, C., & Font, V. (2005). Conflictos semióticos relacionados con el uso de la notación incremental y diferencial en libros de física y de matemáticas del bachillerato. Enseñanza de las Ciencias. Extra number. VII Congress, 1-6. Badillo, E., Azcárate, C., & Font, V. (2011). Análisis de los niveles de comprensión de los objetos 𝑓′(𝑎) y 𝑓′(𝑥) en profesores de matemáticas. Enseñanza de las Ciencias, 29(2), 191-206. Ball, D. L. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning to teach. Journal of Teacher Education, 51, 241-247. Ball, D. L., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners’ mathematical futures. Paper prepared based on keynote address at the 43rd Jahrestagung für Didaktik der Mathematik held in Oldenburg, March 1-4, Germany. Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers' mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433-456). American Educational Research Association. Baumert, Jürgen & Kunter, Mareike & Blum, Werner & Brunner, Martin & Voss (Dubberke), Thamar & Jordan, Alexander & Klusmann, Uta & Krauss, Stefan & Neubrand, Michael & Tsai, Yi-Miau. (2010). Teachers' Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. American Educational Research Journal, 47, 133-180. 47. http://doi.org/10.3102/0002831209345157 Berkeley, S., Scruggs, T. E., & Mastropieri, M. A. (2010). Reading comprehension instruction for students with learning disabilities, 19952006: A meta-analysis. Remedial and Special Education, 31(6), 423-436. http:/doi.org/10.1177/0741932509355988 Bezuidenhout, J. (1998). First-year university students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29, 389-399. Bingolbali, E., & Monaghan, J. (2008). Concept image revisited. Educational Studies in Mathematics, 68(1), 19-35. http://doi.org/10.1007/s10649007-9112-2 Brigham, F. J., Scruggs, T. E., & Mastropieri, M. A. (2011). Science education and students with learning disabilities. Learning Disabilities Research & Practice, 26(4), 223-232. Castro, W. F., Pino-Fan, L., & Velásquez-Echavarría, H. (2018). A proposal to enhance preservice teacher’s noticing. Eurasia Journal of Mathematics, Science & Technology Education, 14(11), em1569. http://doi.org/10.29333/ejmste/92017 Carney, R. N., & Levin, J. R. (2000). Mnemonic instruction, with a focus on transfer. Journal of Educational Psychology, 92(4), 783-790. http://doi.org/10.1037/0022-0663.92.4.783 Çetin, N. (2009). The ability of students to comprehend the function-derivative relationship with regard to problems from their real life. PRIMUS, 19(3), 232-244. De Almeida, L. M. W., & Da Silva, K. A. P. (2018). A semiotic interpretation of the derivative concept in a textbook. ZDM, 50, 881-892. Desfriti, R. (2016). In-service teachers’ understanding on the concept of limits and derivatives and the way they deliver the concepts to their high school students. Journal of Physics: Conference Series, 693. http://doi.org/10.1088/1742-6596/693/1/012016 Delos Santos, A. (2006). An investigation of students’ understanding and representation of derivative in a graphic calculator-mediated teaching and learning environment. Unpublished Ph. D. Thesis, University of Auckland, New Zealand. Dreyfus, T., & Eisenberg, T. (1990). On difficulties with diagrams: Theoretical issues. Proceedings of the 14th International Conference for the Psychology of Mathematics Education, México, (p. 27-34). Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97124. Furinghetti, F., & Paola, D. (1991). The construction of a didactic itinerary of calculus starting from students’ concept images (ages 16-19). International Journal of Mathematical Education in Science and Technology, 22, 719-729. http://doi.org/10.1080/0020739910220503 García, L., & Azcárate, C. & Moreno, M. (2006). Creencias, concepciones y conocimiento profesional de profesores que enseñan cálculo diferencial a estudiantes de ciencias económicas. Revista Latinoamericana de Investigación en matemática Educativa (RELIME), 9(1), 85-116. García, M., Llinares, S., & Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9, 10231045. Gökçek, T., & Açıkyıldız, G. (2015). Preservice mathematics teachers’ errors related to derivative. Turkish Journal of Computer and Mathematics Education, 7(1), 112-141. http://doi.org/10.16949/turcomat.14647 Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas. Unión, Revista Iberoamericana de Educación Matemática, 20, 13-31. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127-135. Godino, J. D., Font, V., Wilhelmi, M., & Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77(2), 247-265. Grossman, P. (1990). The making of a teacher: Teacher knowledge and teacher education. Teachers College Press. Habre, S., & Abbud, M. (2006). Students’ conceptual understanding of a function and its derivative in an experimental calculus course. Journal of Mathematical Behavior, 25, 52-72. Haciomeroglu, E., Aspinwall, L., & Presmeg, N. (2010). Contrasting cases of calculus students’ understanding of derivative graphs. Mathematical Thinking and Learning, 12(2), 152-176. Hänkiöniemi, M. (2006). Is there a limit in the derivative? Exploring students’ understanding of the limit of the difference quotient. In: M. Bosch (Ed.), Proceedings of the fourth congress of the European society for research in mathematics education (CERME 6) (pp. 1758-1767), Sant Feliu de Guixols, Spain. European Research in Mathematics Education. Hatisaru, V., & Erbas, A.K. (2017). Mathematical Knowledge for Teaching the Function Concept and Student Learning Outcomes. Int Journal of Sci and Math Educ, 15, 703-722. http://doi.org/10.1007/s10763-015-97075 Hauger, G. S. (2000). Instantaneous rate of change: A numerical approach. International Journal of Mathematical Education of Science and Technology, 31(6), 891-897. Heid, K. M. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education, 19(1), 3-25. Hill, Heather & Blunk, Merrie & Charalambous, Charalambos & Lewis, Jennifer & Phelps, Geoffrey & Sleep, Laurie & Ball, Deborah. (2008). Mathematical Knowledge for Teaching and the Mathematical Quality of Instruction: An Exploratory Study. Cognition and Instruction, 26. 430-511. http://doi.org/10.1080/07370000802177235. Hill, H. C., Ball, D. L., & Schlling, S. G. (2008). Unpacking pedagogical content knowledge of students. Journal for Research in Mathematics Education, 39, 372-400. Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430-511. Inglada, N., & Font, V. (2005). Significados institucionales y personales de la derivada. Conflictos semióticos relacionados con la notación incremental. Proceedings of the V Congreso Internacional Virtual de Educación (CIVE’05), Córdoba. (p. 1-16). Johnson, R. B., & Onwuegbuzie, A. (2004). Mixed methods research: A research paradigm whose time has come. Educational Research, 33(7), 14-26. Kahan, J. A., Cooper, D. A., & Bethea, K. A. (2003). The role of mathematics teachers’ content knowledge in their teaching: A framework for research applied to a study of student teachers. Journal of Mathematics Teacher Education, 6(3), 223–252. Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820. Lam, T. (2009). On In-Service Mathematics Teachers’ Content Knowledge of Calculus and Related Concepts. The Mathematics Educator, 12(1), 6986. Letendre, W. (1993). Mnemonic instruction with regular and special education students in social studies. Southern Social Studies Journal, 18(2), 2537. Malaspina, U., & Font, V. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics, 75(1), 107-130. Maschietto, M. (2008). Graphic calculators and micro-straightness: analysis of a didactic engineering. International Journal of Computers for Mathematical Learning, Netherlands, 13(3), 207-230. Mhlolo, M. (2012). Mathematical connections of a higher cognitive level: a tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology, 16(2), 176-191. Moon, K., Brenner, M., Jacob, B., & Okamoto, Y. (2013). Prospective secondary mathematics teachers’ understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, 15(3), 201-227. Muhundan, A. (2005). Effects of using graphing calculators with a numerical approach on students' learning of limits and derivatives in an applied calculus course at a community college. http://scholarcommons.usf.edu/etd/780/ Orhun, N. (2012). Graphical understanding in mathematics education: Derivative functions and students’ difficulties. Procedia - Social and Behavioral Sciences, 55(2012), 679-684. Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14, 235-250. Otero, M. R. & Llanos, V. C. (2019). Difficulties faced by the in-service mathematics teachers planning lessons based on questioning during a training course. International Journal of Research in Education and Science (IJRES), 5(2), 429-436. Ozmantar, M. F., Akkoç, H., Bingolbali, E., Demir, S., & Ergene, B. (2010). Pre-service mathematics teachers’ use of multiple representations in technology-rich environments. Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 19-36. Panero, M., Arzarello, F., & Sabena, C (2016). The mathematical work with the derivative of a function: Teachers’ practices with the idea of “generic”. Bolema: Boletim de Educação Matemática, 30(54), 265- 286. http://doi.org/10.1590/1980-4415v30n54a13 Park, J. (2015). Is the derivative a function? If so, how do students talk about it? International Journal of Mathematical Education in Science and Technology, 44(5), 624-640. Peng, A., & Luo, Z. (2009). A framework for examining mathematics teacher knowledge as used in error analysis. For the Learning of Mathematics, 29(3), 22–25. Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers' didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429-1456. http://doi.org/10.12973/eurasia.2015.1403a Pino-Fan, L., Godino, J. D., Font, V., & Castro, W. F (2013). Prospective teacher's specialized content knowledge on derivative. In B. Ubuz, Ç. Haser & M. Mariotti (Eds.), Proceedings of the Eighth Congress of European Research in Mathematics Education Antalya, Turkey. (pp. 3195-3205). CERME. Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63-94. http://dx.doi.org/10.1007/s10857-016-9349-8 Rogalski, M. (2008). Les rapports entre local et global: mathématiques, rôle en physique élémentaire, questions didactiques. In: Viennot, L. (Ed.). Didactique, épistémologie et histoire des sciences. (p. 61-87). Presses Universitaires de France. Rosnawati, R., Wijaya. A & Tuharto (2020). The perspective prospective professional teachers toward (specific) pedagogical content knowledge on derivative concept. Journal of Physics: Conference Series, 1581. doi.org/doi:10.1088/1742-6596/1581/1/012050 Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281. Sahin, Z., Yenmez, A. A., & Erbas, A. K. (2015). Relational understanding of the derivative concept through mathematical modeling: A case study Eurasia. Journal of Mathematics, Science & Technology Education, 2015, 11(1), 177-188. http://doi.org/10.12973/eurasia.2015.1149a Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2014). Developing preservice teachers’ noticing of students’ understanding of the derivative concept. International Journal of Science and Mathematics Education, 13, 1305-1329. http://doi.org/10.1007/s10763-014-9544-y Saltan, F., Arslan K., & Wang, S. (2017). A comparison of in-service and preservice teachers’ technological pedagogical content knowledge selfconfidence. Cogent Education, 4(1), article 1311501. Santi, G. (2011). Objectification and semiotic function. Educational Studies in Mathematics, 77(2-3), 285-311. Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematics. En D. Tirosh, & T. L. Wood (Eds.), Tools and processes in mathematics teacher education. (pp. 321-354). Sense Publishers. Scruggs, T. E., Mastropieri, M. A., Berkeley, S., & Graetz, J. E. (2009). Do special education interventions improve learning of secondary content? A meta-analysis. Remedial and Special Education, 31(6), 437-449. Selden, J., Mason, A., & Selden, A. (1989). Can average calculus students solve non-routine problems? Journal of Mathematical Behavior, 8, 45-50. Sharplin E., Peden S., & Marais, I. (2016). Making the grade: Describing inherent requirements for the initial teacher education practicum. Asia-Pacific Journal of Teacher Education, 44(3), 224-241. http://doi.org/10.1080/1359866X.2015.1105933 Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22. Silverman, J., & Thompson, P. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-511. http://doi.org/10.1007/s10857-008-9089-5 Suzuka, K., Sleep, L., Ball, D. L., Bass, H., Lewis, J. M., & Thames, M. H. (2009). Designing and using tasks to teach mathematical knowledge for teaching. In D. Mewborn & H. S. Lee (Eds.), Scholarly practices and inquiry in the preparation of teachers. Association of Mathematics Teacher Education Monograph Series (Vol. 6, pp. 7-23). Association of Mathematics Teacher Education. Tall, D. (1991). Intuition and Rigor: The role of visualization in the calculus. In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics. (pp. 105–119). Mathematical Association of America. Tsamir, P., Rasslan, S., & Dreyfus, T. (2006). Prospective teachers’ reactions to Right-or-Wrong tasks: The case of derivatives of absolute value functions. Journal of Mathematical Behavior, 25, 240-251. Turnuklu, E. B., & Yesildere, S. (2007). The pedagogical content knowledge in mathematics: Preservice primary mathematics teachers’ perspectives in Turkey. IUMPST: The Journal, 1, 1-13. Ubuz, B. (2001). First year engineering students’ learning of point of tangency, numerical calculation of gradients, and the approximate value of a function at a point through computers. Journal of Computers in Mathematics and Science Teaching, 20(1), 113–137. Vandebrouck, F. (2011). Students’ conceptions of functions at the transition between secondary school and university. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7th Conference of European Researchers in Mathematics Education, Rzeszow. (pp. 2093-2102). Viholainen, A. (2008). Finnish mathematics teacher student’s informal and formal arguing skills in the case of derivative. Nordic Studies in Mathematics Education, 13(2), 71-92. Zazkis, R. (2008). Examples as tools in mathematics teacher education. In D. Tirosh & T. Wood (Eds.), International handbook in mathematics teacher education, vol. 2: Tools in mathematics teacher education (pp. 135–156). Sense.