Instrumental genesis of a learning trajectory: the case of Pedro’s professional noticing
Tipo de documento
Autores
Lista de autores
Sánchez-Matamoros, Gloria, Moreno, Mar y Valls, Julia
Resumen
Background: many teacher education programmes aim for prospective teachers to learn to notice mathematics teaching-learning situations based on learning trajectories of specific concepts. However, there has not been a deeper study on how they use that knowledge to notice children’s mathematical thinking. Objective: to identify characteristics of the instrumental genesis process in an early childhood prospective teacher as he notices a classroom situation using a learning trajectory of length and its measurement as an artefact. Design: we have adapted Rabardel’s instrumental approach. Settings and participants: an early childhood prospective teacher solving a professional task (case study). Data collection and analysis: we analyse the student’s activity while solving the task, considering the processes of instrumental genesis. Results: the outcomes reveal characteristics of professional noticing skills: (a) providing mathematical meaning to the elements allows constructing utilisation schemes to identify; (b) considering the inclusiveness of levels of understanding and the continuity of progression in learning allows constructing utilisation schemes to interpret, and (c) considering the sequentiality of levels of understanding allows constructing utilisation schemes to make decisions. Conclusions: instrumental genesis allows identifying which schemes a kindergarten prospective teacher constructs and how he/she acquires his/her professional noticing, and provides information for the teacher educator to make instructional decisions. For example, in our case, the teacher educator provides the prospective teacher of this case study with tasks to give meaning to the transitivity element and variety of contexts related to conservation.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Estudio de casos | Otro (enfoques) | Tareas | Usos o significados
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
7
Rango páginas (artículo)
91-119
ISSN
21787727
Referencias
Amador, J. (2020). Noticing as a tool to analyze mathematics instruction and learning. In S. Llinares, & O. Chapman (eds.), International Handbook of Mathematics Teacher Education. Volume 2: Tools and Processes in Mathematics Teacher Education. (p. 310-336). Brill Sense. Bartell, T.G., Webel, C., Bowen, B., & Dyson, N. (2013). Prospective teacher learning: recognizing evidence of conceptual understanding. Journal of Mathematics Teacher Education, 16, 57-79. Clements, D.H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical thinking and Learning, 6, 81-89. Empson, S., & Junk, D. (2004). Teachers “knowledge of children’’ mathematics after implementing a student-centered curriculum. Journal of Mathematics Teacher Education, 7(2), 121–144. Fernández, C., & Choy, B.H. (2020). Theoretical Lenses to develop Mathematics Teacher Noticing. In S. Llinares, & O. Chapman (eds.), International Handbook of Mathematics Teacher Education. Volume 2: Tools and Processes in Mathematics Teacher Education, (p. 337-360). Brill Sense. Fernández, C., Llinares, S., & Valls, J. (2013). Primary school teacher’s noticing of students’ mathematical thinking in problem solving. The Mathematics Enthusiast, 10(1), 441-468. Gasteiger, H., & Benz, C. (2018). Enhancing and analyzing kindergarten teachers’ professional knowledge for early mathematics education. Journal of Mathematical Behavior, 51, 109–117. https://doi.org/10.1016/j.jmathb.2018.01.002. Gasteiger, H., Bruns, J., Benz, C., Brunner, E., & Sprenger, P. (2020). Mathematical pedagogical content knowledge of early childhood teachers: a standardized situation-related measurement approach. ZDM Mathematics Education 52, 193–205. https://doi.org/10.1007/s11858019-01103-2. Ivars, P., Fernández, C., Llinares, S., & Choy, B.H. (2018). Enhancing Noticing: Using a Hypothetical Trajectory to Improve Pre-service Primary Teachers’ Professional Discourse. Eurasia Journal of Mathematics, Science and Technology Education, 14(11), em1599. https://doi.org/10.29333/ejmste/93421 Ivars, P., Fernández, C., & Llinares, S. (2020). A Learning Trajectory as a Scaffold for Pre-service Teachers’ Noticing of Students’ Mathematical Understanding. International Journal of Science and Mathematics Education, 18, 529-548. Jacobs, V.R., Lamb, L.C., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. Krupa, E. E., Huey, M., Lesseig, K., Casey, S., & Monson, D. (2017). Investigating secondary preservice teacher noticing of students’ mathematical thinking. In E. O. Schack et al. (Eds.). Teacher Noticing: Bridging and Broadening Perspectives, Contexts, and Frameworks (pp. 49-71). Springer. Lee, J.E. (2017). Preschool Teachers’ Pedagogical Content Knowledge in Mathematics. International Journal of Early Childhood, 49, 229–243. https://doi.org/10.1007/s13158-017-0189-1. Llinares, S. (2014). Experimentos de enseñanza e investigación. Una dualidad en la práctica del formador de profesores de matemáticas. Educación matemática, 25 años. (p. 31-51). Llinares, S. (2012). Construcción de conocimiento y desarrollo de una Mirada profesional para la práctica de enseñar matemáticas en entornos en línea. AIEM. Avances de Investigación en Educación Matemática, 2, 53-70. Lobato, J., & Walters, C.D. (2017). A taxonomy of approaches to learning trajectories and progressions. In J. Cai (Ed.). Compendium for Research in Mathematics Education, 74-101. Mason, J. (2002). Researching your own practice. The discipline of noticing. Routledge. Moreno, M., Sánchez-Matamoros, G., Callejo, M. L., Pérez-Tyteca, P., & Llinares, S. (2021). How prospective kindergarten teachers develop their noticing skills: the instrumentation of a learning trajectory. ZDM– Mathematics Education, 53(1), 57-72. Parks, A. M., & Wager, A. A. (2015). What knowledge is shaping teacher preparation in early childhood mathematics? Journal of Early Childhood Teacher Education, 36 (2), 124-141. https://dx.doi.org/10.1080/10901027.2015.1030520. Rabardel, P. (2002). People and technology – a cognitive approach to contemporary instruments. Université Paris 8. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: a developmental perspective. Interacting with computers, 15(5), 665691. Sánchez-Matamoros, G., Moreno, M., Perez-Tyteca, P., & Callejo, M.L. (2018). Trayectorias de aprendizaje de la longitud y su medida como instrumento conceptual usado por futuros maestros de educación infantil. RELIME - Revista Latinoamericana de Investigación en Matemática Educativa, 21(2), 203-228. Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education, 10(2), 123–140. Sarama J., & Clements D. (2009). Early Childhood Mathematics Education Research. Learning Trajectories for Young Children. Routledge. Sherin, M.G., & Van Es, E. A. (2009). Effects of video club participation on teachers' professional vision. Journal of teacher education, 60(1), 2037. Son, J. (2013). How preservice teachers interpret and respond to student errors: ratio and proportion in similar rectangles. Educational Studies in Mathematics, 84, 49-70. Stockero, S.L. (2014). Transitions in prospective mathematics teacher noticing. In J. L. Lo et al. (eds.), Research Trends in Mathematics Teacher Education. (pp. 239- 259). Springer. Trouche, L. (2003). From artifact to instrument: mathematics teaching mediated by symbolic calculators. Interacting with Computers, 15(6), 783–800. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for mathematical learning, 9(3), 281-307. Trouche, L. (2020). Instrumentalization in mathematics education. Encyclopedia of Mathematics Education. (p. 404-412). Springer,. Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital tools in mathematics education. Teaching Mathematics and Its Applications: International Journal of the IMA, 33(3), 193-209. Vergnaud, G. (1996). The theory of conceptual fields. Theories of mathematical learning. (p. 219-239) Wilson, P.H., Mojica, G., & Confrey, J. (2013). Learning trajectories in teacher education: Supporting teachers’ understanding of students’ mathematical thinking. Journal of Mathematical Behavior, 32, 103121. Wilson, P.H., Sztajn, P., Edgington, C., Webb, J., & Myers, M. (2017). Changes in Teachers’ Discourse about students in a professional Development on Learning Trajectories. American Educational Research Journal, 54(3), 568-604.