Philosophy, mathematics and education
Tipo de documento
Autores
Lista de autores
Otte, Michael y Xavier, Gonzaga
Resumen
From Aristotle up to the Baroque knowledge was considered as essentially determined by its object. Since Kant and his so-called Copernican Revolution of Epistemology the epistemic subject and the method and means of its activities become equally, or even more important. Mathematics is, first of all, an activity, which has increasingly liberated itself from metaphysical and ontological agendas. As a consequence, the sense of mathematical symbolizations acquired partial independence from reference. The theories of modern science are schemes of interpretation of objective and socio-historical reality, rather than images of it. To observe the dynamics of the complementarity of sense and reference of symbolic representations becomes an important way of all knowledge related research. Perhaps more than any other practice, mathematical practice requires a complementarist approach, if its dynamics and meaning are to be properly understood.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Desde disciplinas académicas | Historia de la Educación Matemática | Usos o significados
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
4
Número
1
Rango páginas (artículo)
197-215
ISSN
24476447
Referencias
Berkeley, G. (1989).Philosophical Works, London: Everyman’s Library. Bochner, S. (1974). Mathematical Reflections, The American Mathematical Monthly, vol. 81, 827-852. Bolzano, B. (1981). Wissenschaftslehre (WL), 4 vols., Sulzbach: Wolfgang Schultz. Reprint Scientia Verlag Aalen. Brown, St. (1993). Leibniz: Modern, Scholastic, or Renaissance, in: Tom Sorell (ed.),The Rise of Modern Philosophy,Clarendon Press, Oxford, 213-230. Cassirer, E. (1953). Substance and Function, New York: Dover Publ. Chaitin, G. J. (1987). Information, Randomness & Incompleteness, New Jersey: World Scientific Publishing Co. Chaitin, G. J. (1998).The Limits of Mathematics. A Course on Information Theory and the Limits of Formal Reasoning. Berlin, New York: Springer. Diderot, D. (1754/2000). On the interpretation of Nature. Clinamen Press Ltd. Dummett, M. (1981). Frege-Philosophy of Language. Harvard: Harvard UP. Føllesdal, D. (1979). “Hermeneutics and the hypothetico-deductive method”, Dialectica, 33: 319–336 Foucault, M. (1973). The Order of Things, New York: Vintage Books. Frege, G. (1884).The Foundation of Arithmetic, Oxford: Basil Blackwell 1980.Translation of:Grundlagen der Arithmetik, Breslau, 1884. Hacking, I. (1986), Proof and Eternal Truth: Descartes and Leibniz in: T. Honderich (ed.) Philosophy through its Past, Penguin Books, 207-224. Heijenoort, J. (1967). Logic as calculus andlogic as language,Synthese17, pp. 324-330. Hersh, R. (1997). What is Mathematics really?Oxford: Oxford UP. Hilbert, D. (1918). Axiomatisches Denken, Math. Annalen, vol 78, 405-415. Jesseph, D.J. (1993). Berkeley’s Philosophy of Mathematics, Chicago:U.Of Chicago Press. Kant, I. (1787). Critique of Pure Reason, Second Edition. Kneale, W. & Kneale, M. (1971). The Development of Logic, Oxford: at the Clarendon Press. Lachterman, D. (1989). The Ethics of Geometry, London: Routledge. Locke, J. (1975/1690). An Essay Concerning Human Understanding. Oxford: Oxford University Press. Martin, G. (1985). Arithmetic and Combinatorics, Southern Illinois UP, Carbondale, Mouy, P. (1971). Mathematics and Philosophical Idealism, in: Le Lionnais (Ed.), Great Currents of Mathematical Thought, vol. II, Dover, pp. 48-57. Neemann, U. (1972). Bernard Bolzanos Lehre von Anschauung und Begriff, Schöningh, Paderborn,Otte, M. (2014). Analytische Philosophie, Hamburg: Meiner.Peirce, Ch. S.: CCL = The Cambridge Conferences Lectures of 1898, in: Ch. S. Peirce, Reasoning and the Logic of Things, ed. by K.L. Ketner, with an Introduction by K.L. Ketner and H. Putnam, Harvard UP, Cambridge/London 1992CP = Collected Papers of Charles Sanders Peirce, Volumes I-VI, ed. by Charles Hartshorne and Paul Weiß, Cambridge, Mass. (Harvard UP) 1931-1935, Volumes VII-VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard UP) 1958 (quoted by no. of volume and paragraph). Potter, M.D. (1990). Sets, Oxford: Clarendon Press. Russell, B.(1919). Introduction to Mathematical Philosophy, George Allen & Unwin, Ltd., London.Shea, W.R. (1991).The Magic of Numbers and Motion, Watson Publishing. Stolzenberg, G. (1980). Can an Inquiry into the Foundations of Mathematics tell us anything interesting about the Mind, In: P. Watzlawik (ed.), Invented Reality, W. W.NortonInc., 257-308. Thom, R. (1973). Modern mathematics: does it exist?In: G. Howson (ed.),Developments in Mathematical Education, Cambridge, pp. 194–209. Thom, R. (1992). Leaving Mathematics for Philosophy, in: Casacuberta/Castellet (eds), Mathematical Research Today and Tomorrow, Springer N.Y. Wang, H. (1996). A Logical Journey, The MIT-Press, Cambridge/US.