O Uso de simulação para o ensino de estatística inferencial: o caso do teorema central do limite
Tipo de documento
Autores
Lista de autores
Frei, Fernando
Resumen
Os conceitos de estatística inferencial compõem a base pela qual a prática da estatística é desenvolvida em grande parte dos cursos de graduação. O teorema central do limite é o pilar central para a sustentação de análises paramétricas e, portanto, de parte expressiva da estatística Inferencial. O objetivo deste artigo é apresentar um módulo de simulação usando planilha eletrônica para o aprendizado interativo que ilustra os conceitos e a validade do Teorema Central do Limite para alunos do curso de graduação em ciências biológicas como uma atividade formadora. Os resultados apontam que a simulação tem a capacidade de promover o aprendizado ativo com o uso de tecnologia para desenvolver o entendimento conceitual do teorema. Ademais, a atividade de simulação auxiliou o docente a entender dificuldades apresentadas durante o processo o que possibilita propor novas estratégias para o ensino do referido teorema.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Cálculo | Desde disciplinas académicas | Dificultades | Estadística | Software
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
BAKER, J.; SUGDEN, S. Spreadsheets in Education –The First 25 Years. Spreadsheets in Education, 1(1), 2003. Disponível em Acessado em: 01 de maio de 2019. BARR, G. D., SCOTT, L. Teaching statistics in a spreadsheet environment using simulation. Spreadsheets in Education, v.4, n.3, p.1-16, 2001. BEN-ZVI, D. Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, v.2, n.1, p.127-155, 2000. BRUSSOLO, M. E. Understanding the Central Limit Theorem the Easy Way: A Simulation Experiment. 2nd Innovative and Creative Education and Teaching International Conference (ICETIC2018), Badajoz, Spain, 20–22 June 2018. CHAAMWE, N.; SHUMBA, L. ICT Integrated Learning: Using Spreadsheets as Tools for e-Learning, A Case of Statistics in Microsoft Excel. International Journal of Information and Education Technology, v.6, n.6, p.435-440, 2016. CHANCE, B., DELMAS, R. C., & GARFIELD, J. Reasoning About Sampling Distributions. In Ben-Zvi & J. Garfield (Eds.). The challenge of developing statistical literacy, reasoning and thinking (pp. 295-323). The Netherlands: Kluwer Academic Publishers, 2004. CHANCE, B.; BEN-ZVI, D.; GARFIELD, J.; MEDINA, E. The role of technology in improving Student Learning of Statistics. Technology Innovations in Statistics Education, v.1, n.1, p.1-27, 2007. CHANDRAKANTHA, L. Simulation using excel data tables in teaching introductory statistics. Journal of Computing Sciences in Colleges, v.29, n.3, p.29-34, 2014. DE JONG, T.; VAN JOOLIGEN, W. Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, v.68, n.2, p.179-201, 1998. DELMAS, R. C.; GARFIELD, J.; CHANCE, B. L. A Model of Classroom Research in Action: Developing Simulation Activities to Improve Students' Statistical Reasoning. Journal of Statistics Education, v.7, n.3, p.1-16, 1999. DINOV, I. D.; CHRISTOU, N.; SANCHEZ, J. Central limit theorem: New SOCR applet and demonstration activity. Journal of Statistics Education, v.16, n.2, p.1-15, 2008. ERICKSON, T. Using Simulation to Learn about Inference. in A Rossman and B Chance, (eds.) Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute, 2006. . Acessado em 05 de junho de 2019. FERREIRA, R. S; KATAOKA, V. Y.; KARRER, M. Teaching probability with the support. Statistics Education Research Journal, v.13, n.2, p.132-147, 2014. HAGTVEDT, R.; JONES, G. T.; JONES, K. Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem. Teaching Statistics, v.29, n.3, p.94-97, 2007. ______. Teaching confidence intervals using simulation. Teaching Statistics, v.30, n.2, p.53-56, 2008. HANEY, M. H. A Spreadsheet Simulation to Teach Concepts of Sampling Distributions and the Central Limit Theorem. Spreadsheets in Education, 8(3), Article 3, 2015. HUNT, N. Individualized Statistics Coursework Using Spreadsheets. Teaching Statistics, v.29, n.2, p.38-43, 2007. ______. Using Microsoft Office to Generate Individualized Tasks for Students. Teaching Statistics. V.27, n.2, p.45-48, 2005. ISLAM, M. R. Sample Size and Its Role in Central Limit Theorem (CLT). Computational and Applied Mathematics Journal, v.4, n.1, p.1-7, 2008. KLAHR, D.; NIGAM, M. The equivalence of learning paths in early science instruction. Psychological Science, v.15, n.10, p.661-667, 2004. LANE, D. M. E PERES, S. C. Interactive simulations in the teaching of statistics: Promise and Pitfalls. Proceedings of the Seventh Annual Meeting of the International Conference on the Teaching of Statistics, Salvador, Brazil, 2006. Disponível em: . Acessado em 10 novembro de 2018. MAURER, K.; LOCK, D. Comparison of Learning Outcomes for Simulation-based and Traditional Inference Curricula in a Designed Educational Experiment. Technology Innovations in Statistics Education, v.9, n.1, 2016. Disponível em: https://escholarship.org/uc/item/0wm523b0. Acessado em 10 novembro de 2018. MILLS, J. D. Using Computer Simulation Methods to Teach. Statistics: A Review of the Literature. Journal of Statistics Education, v.10, n.1, p.1-20, 2002. NEUMANN, D. L.; NEUMANN, M. M.; HOOD, M. Evaluating computer-based simulations, multimedia and animations that help integrate blended learning with lectures in first year statistics. Australasian Journal of Educational Technology, v.27, n.2, p.274-289, 2011. PACE, L. A.; BARCHARD K. A. Using a spreadsheet programme to teach introductory statistics: reducing anxiety and building conceptual understanding. Int. J. Innovation and Learning, v.3, n.3, p.267-283, 2006. PFANNKUCH, M.; BROWN, C. M. Building on and Challenging Students' Intuitions About Probability: Can We Improve Undergraduate Learning? Journal of Statistics Education, v.4, n.1, p.1-15, 1996. PATRON, H.; SMITH, W. J.; BOLD, D. Demonstrating the central limit theorem in the classroom: an excel exercise. Journal for Economic Educators, v.9, n.1, p. 1-15, 2009 RUGGIERI, E. Visualizing the Central Limit Theorem Through Simulation. PRIMUS, v.26, n.3, p.229-240, 2016. SHI, N; HE, X.; TAO, J. Understanding Statistics and Statistics Education: A Chinese Perspective. Journal of Statistics Education, v.17, n.3, p.1-9, 2009. TAYLOR, M. A. Simulating the central limit theorem. The Stata Journal, v.18, n.2, p.345-356, 2018. TISHKOVSKAYA, S.; LANCASTER, G. A. Statistical education in the 21st Century: A review of challenges, teaching innovations and strategies for reform. Journal of Statistics Education, v.20, n.1, p.1-56, 2012. TROSSET M. W. An Introduction to Statistical Inference and Data Analysis. Ebook. 2001. Disponível em: http://inis.jinr.ru/sl/M_Mathematics/MV_Probability/MVas_Applied%20statistics/%D0%A2rosset%20Introduction.pdf. Acessado em 29 dezembro de 2020. WARNER, C. B.; MEEHAN, A. M. Microsoft Excel As a Tool for Teaching Basic Statistics. Teaching of Psychology, v.28, n.4, p.295-298, 2001.