Measuring perspective of fraction knowledge: integrating historical and neurocognitive findings
Tipo de documento
Autores
Lista de autores
Powell, Arthur B.
Resumen
In this theoretical investigation, we describe the origins and cognitive difficulties involved in the common conception of fractional numbers, where a fraction corresponds to some parts of an equally partitioned whole. As an alternative, we present a new notion of fraction knowledge, called the perspective of measure-proportionality. It is informed both by the historical-cultural analysis of the emergence of fractions in social practice and by neuroscientific evidence of the propensity of human beings to perceive from childhood nonsymbolic proportionality between pairs of quantities. We suggest that this natural neurocognitive propensity of individuals may be an instructional link to develop students’ robust knowledge about fractional numbers.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Dificultades | Evolución histórica de conceptos | Números racionales | Simbólica | Teoría social del aprendizaje | Teórica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
4
Número
1
Rango páginas (artículo)
1-19
ISSN
25255444
Referencias
ALEKSANDROV, A. D. A general view of mathematics. In: ALEKSANDROV, A. D.; KOLMOGOROV, A. N.; LAVRENT’EV, M. A. (Org.). Mathematics: Its content, methods, and meaning. Cambridge, MA: Massachusetts Institute of Technology, 1963. v.1 p. 1-64. ALQAHTANI, M. M.; POWELL, A. B. Investigating how a measurement perspective changes pre-service teachers’ interpretations of fractions. In: HODGES, T. E.; ROY, G. J.; TYMINSKI, A. M. (Org.). Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Greenville, SC: University of South Carolina & Clemson University., 2018. p. 484-487. BAILEY, D. H. et al. Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, v. 113, n. 3, p. 447-455, 11//. 2012. Disponível em: . BEHR, M. J. et al. Rational number, ratio and proportion. In: GROWS, D. A. (Org.). Handbook on research on mathematics teaching and learning. New York: Macmillan, 1992. p. 296-333. BEHR, M. J. et al. Rational number concepts. In: LESH, R.; LANDAU, M. (Org.). Acquisition of mathematical concepts and processes. New York: Academic, 1983. p. 91- 125. BEHR, M. J. et al. Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, v. 5, n. 5, p. 321-341, 1984. BOBOS, G.; SIERPINSKA, A. Measurement approach to teaching fractions: A design experiment in a pre-service course for elementary teachers. International Journal for Mathematics Teaching and Learning, v. 18, n. 2, p. 203-239, 2017. BOOTH, J. L.; NEWTON, K. J. Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, v. 37, n. 4, p. 247-253, 10//. 2012. Disponível em:. BROUSSEAU, G.; BROUSSEAU, N.; WARFIELD, V. Rationals and decimals as required in the school curriculum: Part 1: Rationals as measurement. The Journal of Mathematical Behavior, v. 23, n. 1, p. 1-20, //. 2004. Disponível em: . CAMPOS, T. M. M.; RODRIGUES, W. R. A idéia de unidade na construção do conceito do número racional. REVEMAT - Revista Eletrônica de Educação Matemática, v. 2, n. 4, p. 68-93, 2007. CARAÇA, B. D. J. Conceitos fundamentais da Matemática. Lisboa: Tipografia Matemática, 1951. CLAWSON, C. C. The mathematical traveler: Exploring the grand history of numbers. Cambrige, MA: Perseus, 1994/2003. COURANT, R.; ROBBINS, H. What is mathematics?: An elementary approach to ideas and methods. 2nd revised by Ian Steward,. ed. Oxford: New York, 1941/1996. CUISENAIRE, G.; GATTEGNO, C. Numbers in colour: A new method of teaching the process of arithmetic to all level of the Primary School. London: Hienemann, 1954. DAVYDOV, V. V.; TSVETKOVICH, Z. H. On the objective origin of the concept of fractions. Focus on Learning Problems in Mathematics, v. 13, n. 1, p. 13-64, 1991. DOUGHERTY, B. J.; VENENCIANO, L. C. H. Measure Up for Understanding. Teaching Children Mathematics, v. 13, n. 9, p. 452-456, 2007. Disponível em: . DUFFY, S.; HUTTENLOCHER, J.; LEVINE, S. It is all relative: How young children encode extent. Journal of Cognition and Development, v. 6, n. 1, p. 51-63, 2005. ESCOLANO VIZCARRA, R.; GAIRÍN SALLÁN, J. M. Modelos de medida para la enseñanza del número racional en Educación Primaria. Unión. Revista Iberoamericana de Educación Matemática, n. 1, p. 17-35, 2005. FLAGG, G. Numbers: Their history and meaning. Mineola, NY: Dover, 1983. GATTEGNO, C. Gattegno mathematics text-book 1: Qualitative arithmetic, The study of numbers from 1 to 20. New York: Educational Solutions, 1970a. ________. Gattegno mathematics text-book 2: Study of numbers up to 1,000; The four operations. New York: Educational Solutions, 1970b. ________. Gattegno mathematics text-book 4: Fractions, decimals, and percentages. New York: Educational Solutions, 1970c. ________. What we owe children: The subordination of teaching to learning. New York: Avon, 1970d. ________. The science of education: Part 1: Theoretical considerations. New York: Educational Solutions, 1987. ________. The science of education: Part 2B: The awareness of mathematization. New York: Educational Solutions, 1988. GATTEGNO, G. C.; HOFFMAN, M. R. Handbook of activities for the teaching of mathematics at the elementary school. New York: Human Education, 1976. GILLINGS, R. J. Mathematics in the time of the pharaohs. Mineola, New York: Dover, 1972/1982. GÓMEZ, D. M. et al. The effect of inhibitory control on general mathematics achievement and fraction comparison in middle school children. ZDM Mathematics Education, v. 47, n. 5, p. 801-811, 2015. Disponível em: . ISCHEBECK, A. K.; SCHOCKE, M.; DELAZER, M. The processing and representation of fractions within the brain. An fMRI investigation. NeuroImage, v. 47, p. 403-413, 2009/07/01/. 2009. Disponível em: . JACOB, S. N.; NIEDER, A. Notation-Independent Representation of Fractions in the Human Parietal Cortex. Journal of Neuroscience, v. 29, n. 14, p. 4652-4657, 2009a. Disponível em: . ________ . Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, v. 30, n. 7, p. 1432-1442, 2009b. Disponível em: . KERSLAKE, D. Fractions: Children’s strategies and errors. Windsor, England: NEER- NELSON, 1986. KIEREN, T. E. On the mathematical, cognitive and instructional foundations of rational number. In: LESH, R. A. (Org.). Number and measurement. Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics, and Environmental Education, 1976. p. 101-144. ________. Personal knowledge of rational numbers: Its intuitive and formal development. In: HEIBERT, J.; BEHR , M. J. (Org.). Number concepts and operations in the middle grades. Reston, VA: Lawrence Erlbaum, 1988. p. 49-84. LAMON, S. J. Presenting and representing: From fractions to rational numbers. In: CUOCO, A.; CURCIO, F. (Org.). The Roles of Representations in School Mathematics - 2001 Yearbook. Reston: National Council of Teachers of Mathematics, 2001. p. 146- 168. ________. Rational numbers and proportional reasoning: Toward a theoretical framework for research. In: LESTER, J. F. K. (Org.). Second handbook of research on mathematics teaching and learning: A Project of the National Council of Teachers of Mathematics. Charlotte, NC: Information Age, 2007. p. 629-667. ________. Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. 3rd. ed. New York: Routledge, 2012. LEWIS, M. R.; MATTHEWS, P. M.; HUBBARD, E. M. Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In: BERCH, D. B.; GEARY, D. C.; KOEPKE, K. M. (Org.). Development of mathematical cognition: Neural substrates and genetic influences. San Diego, CA: Academic Press., 2015. p. 141–160. LIN, C.-Y. et al. Preservice Teachers’ Conceptual and Procedural Knowledge of Fraction Operations: A Comparative Study of the United States and Taiwan. School Science and Mathematics, v. 113, n. 1, p. 41-51, 01/01/. 2013. MAHER, C. A.; YANKELEWITZ, D., Eds. Children’s reasoning while building fraction ideas. Boston: Senseed. 2017. MATTHEWS, P. G.; CHESNEY, D. L. Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, v. 78, p. 28-56, 2015. MATTHEWS, P. G.; ELLIS, A. B. Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, v. 4, n. 1, p. 19-58, 2018. MATTHEWS, P. G.; ZIOLS, R. What’s perception got to do with it? Re-framing foundations for rational number concepts. In: NORTON, A.; ALIBALI, M. W. (Org.). Constructing Number: Merging Perspectives from Psychology and Mathematics Education. Cham: Springer International Publishing, 2019. p. 213-235. MCCRINK, K.; WYNN, K. Ratio abstraction by 6-month-old infants. Psychological Science, v. 18, n. 8, p. 740-745, 2007. MOCK, J. et al. Magnitude processing of symbolic and non-symbolic proportions: An fMRI study. Behavioral Brain Functions, v. 14, n. 9, p. 1-19, 2018. MORRIS, A. K. A teaching experiment: Introducing fourth graders to fractions from the viewpoint of measuring quantities using Davydov’s mathematics curriculum. Focus on Learning Problems in Mathematics, v. 22, n. 2, p. 32-83, 2000. NATIONAL MATHEMATICS ADVISORY PANEL. Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education, 2008. NI, Y.; ZHOU, Y.-D. Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, v. 40, n. 1, p. 27-52, 2005. OBERSTEINER, A. et al. Understanding fractions: Integrating results from mathematics education, cognitive psychology, and neuroscience. In: NORTON, A.; ALIBALI, M. W. (Org.). Constructing number: Merging perspectives from psychology and mathematics Education. Cham: Springer, 2019. p. 135-162. OECD. A profile of student performance in mathematics. In: PISA 2012 results: What students know and can do—Student performance in mathematics, reading, and science. Paris: OECD Publishing, 2014. v.1, Revised edition, February 2014 p. 31-144. POWELL, A. B. Melhorando a epistemologia de números fracionários: Uma ontologia baseada na história e neurociência. Revista de Matemática, Ensino e Cultura, v. 13, n. 29, p. 78-93, 2018a. ________. Reaching back to advance: Towards a 21st-century approach to fraction knowledge with the 4A-Instructional Model. Revista Perspectiva, v. 36, n. 2, p. 399- 420, 2018b. POWELL, A. B.; ALI, K. V. Design research in mathematics education: Investigating a measuring approach to fraction sense. In: CUSTÓDIO, J. F. et al. (Org.). Programa de Pós-Graduação em Educação Científica e Tecnológica (PPGECT): Contribuições para pesquisa e ensino. São Paulo: Livraria da Física, 2018. p. 221-242. RESNIKOFF, H. L.; WELLS JR., R. O. Mathematics in civilization. New York: Dover, 1973/1984. RITCHIE, S. J.; BATES, T. C. Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, v. 24, n. 7, p. 1301- 1308, 2013. ROQUE, T. História da matemática: Uma visão crítica, desfazendo mitos e lendas. Rio de Janeiro: Zahar, 2012. SCHEFFER, N. F.; POWELL, A. B. Frações nos livros do programa nacional do livro didático brasileiro (PNLD). Revemop, in press. SCHMITTAU, J.; MORRIS, A. The development of algebra in the elementary mathematics curriculum of V.V. Davydov. The Mathematics Educator, v. 8, n. 1, p. 60- 87, 2004. SIEGLER, R. S. Magnitude knowledge: The common core of numerical development. Developmental Science, v. 19, n. 3, p. 341-361, 2016. SIEGLER, R. S. et al. Early Predictors of High School Mathematics Achievement. Psychological Science, v. 23, n. 7, p. 691-697, 2012. SIEGLER, R. S. et al. Fractions: the new frontier for theories of numerical development. Trends in Cognitive Sciences, v. 17, n. 1, p. 13-19, 1//. 2013. Disponível em: . SIEGLER, R. S.; LORTIE-FORGUES, H. An integrative theory of numerical development. Child Development Perspective, v. 8, n. 3, p. 144-150, 2014. SON, J.-W.; SENK, S. L. How reform curricula in the USA and Korea present multiplication and division of fractions. Educational Studies in Mathematics, v. 74, n. 2, p. 117-142, 2010. Disponível em: . SOPHIAN, C. Perceptions of proportionality in young children: Matching spatial ratios. Cognition, v. 75, n. 2, p. 145-170, 2000. STRUIK, D. J. A concise history of mathematics. 3rd Revised. ed. New York: Dover, 1948/1967. SWELLER, J. Cognitive load theory, learning difficulty, and instructional design. Learning and instruction, v. 4, n. 4, p. 295-312, 1994. SWELLER, J.; VAN MERRIENBOER, J. J.; PAAS, F. G. Cognitive architecture and instructional design. Educational psychology review, v. 10, n. 3, p. 251-296, 1998. TORBEYNS, J. et al. Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, v. 37, p. 5-13, 6//. 2015. Disponível em: . TUCKER, A. Fractions and units in everyday life. In: MADISON, B. L.; STEEN, L. A. (Org.). Calculation vs. context: Quantitative literacy and its implications for teacher education. Washington, DC: Mathematical Association of America, 2008. p. 75-86. TZUR, R. An integrated study of children's construction of improper fractions and the teacher's role in promoting that learning. Journal for Research in Mathematics Education, v. 30, n. 4, p. 390-416, 1999. VAMVAKOUSSI, X.; VAN DOOREN, W.; VERSCHAFFEL, L. Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, v. 31, n. 3, p. 344-355, 2012/09/01/. 2012. Disponível em: . WU, H.-H. How to prepare students for algebra. American Educator, v. 25, n. 2, p. 1-7, 2001. ________. What’s sophisticated about elementary mathematics? Plenty—That’s why elementary schools need math teachers. American Educator, v. 33, n. 3, p. 4-14, 2009.