How to learn to understand mathematics?
Tipo de documento
Autores
Lista de autores
Duval, Raymond
Resumen
The cognitive core process of mathematical activity is the recognition of a same object in two semiotic representations whose respective contents have nothing in common with each other. It is also the recurrent and insuperable difficulty of comprehension in learning mathematics and the main impediment to solving problems for most students. The theory of registers provides a cognitive analysis of the way of working and thinking in mathematics. It highlights the key cognitive factors to be taken into account in Mathematics Education for all students up to the age of 16. To give an insight into the theory this paper focuses on two topics. How to introduce letters and elementary algebra? How to learn to solve problems in mathematics? And to avoid the confusion of words arising in Mathematics Education whenever we talk about « theories », we shall show how to analyze in terms of registers the mathematical tasks related to these two topics. This allow us to identify the cognitive thresholds to be crossed to understand and to solve problems in mathematics. Analyzing mathematical activity in terms of registers is quite different from the prevailing mathematical view. This concerns the hidden face of mathematical activity and not its exposed face. We are broaching here the crucial issue about teaching mathematics to all students up to the age of 16. What should be its objectives and priority areas.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Contenido | Dificultades | Estrategias de solución | Semiótica
Enfoque
Nivel educativo
Educación infantil, preescolar (0 a 6 años) | Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Volumen
10
Número
2
Rango páginas (artículo)
114-122
ISSN
21765634
Referencias
Duval, R. (2011). Graphiques et équations: L’articulation de deux registres). Gráficos e equações: a articulação de dois registros. REVEMAT, 6(2), 96-112. Duval, R. (2011). Ver e ensinar a Matematica de outra forma. I Entrar no modo matematico de pensar: os registros de representações semioticas. São Paulo: Proem. Duval, R. (2013). Le problèmes dans l’acquisition des connaissances mathématiques : apprendre comment les poser pour devenir capable de les résoudre ? REVEMAT, 8(1),145. doi: http://dx.doi.org/10.5007/1981-1322.2013v8n1p1 Duval, R., Campos, T. M .M., Barros, L.G., & Dias, M.A., (2015a). Ver e ensinar a matemática de outra forma. II. Introduzir a álgebra no ensino: Qual é o objetivo e como fazer isso? São Paulo: Proem Duval R. (2015b). Mundanças, em curso e futuras, dos sistemas educationais: Desafios e marcas dos anos 1960 aos anos … 2030! REVEMAT, 10(1),1-11. doi: http://dx.doi. org/10.5007/1981-1322.2015v10n1p1.