On the difficulties of acquiring mathematical experience: case rural education
Tipo de documento
Autores
Lista de autores
Booß-Bavnbek, Bernhelm
Resumen
Based on a variety of philosophical approaches and my own work for decades in pure and applied mathematics teaching and research, I explain my viewupon the basic difficulties of acquiring the “Mathematical Experience” in the sense of Davis and Hersh (1981) and submit a list of claims how these difficulties can and should be confronted.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
5
Número
1
Rango páginas (artículo)
1-24
ISSN
21779309
Referencias
ALEKSANDROV, A. D.; KOLMOGOROV, A. N.; LAVRENT’EV, M. A. Mathematics: Its content, methods, and meaning. V. I. Cambridge, Mass.: M.I.T., 1963. BLEECKER, D.; BOOß-BAVNBEK, B. Index theory with applications to mathe- matics and physics. Boston: International Press, 2013. BLOMHØJ, M.; KJELDSEN, T. H. Teaching mathematical modelling through project work - Experiences from an in-service course for upper secondary teachers.ZDM Mathematics Education, v. 38, n. 2, p. 163-177, 2006. BOOß-BAVNBEK, B. Against ill-founded, irresponsible modelling. In: NISS, M.; BLUM, W.;HUNTLEY, I. (Ed.).Teaching of mathematical modelling and applications. Chichester: Ellis Horwood, 1991. p. 70-82. BOOß-BAVNBEK, B.; DAVIS, P. J. Unity and disunity in mathematics. Europ. Math. Soc. v 87, mar. 28-31, 2013. BOOß-BAVNBEK, B.; PATE, G. Expanding risk in technological society through progress in mathematical modeling. In: Keitel, C. et al. (Ed.). Mathematics, education, and society. Paris: UNESCO, Division of Science, Technical and Environmental Education, 1989a. p. 75-78. BOOß-BAVNBEK, B.; PATE, G. Information technology and mathematical modelling, the software crisis, risk and educational consequences. ZDM Mathematics Education,v. 21, n. 5, p. 167-175, 1989b. D’AMBROSIO, U. Ethnomathematics. Link between traditions and modernity. Rotterdam: Sense, 2006. DAMEROW, P.; LEFÈVRE, W. Rechenstein, Experiment, Sprache. Historische Fall- studienzur Entstehung der exakten Wissenschaften. Stuttgart: Klett-Cotta, 1981. DAVIS, P. J.; HERSH, R.The mathematical experience. Boston, Mass.: Birkhäuser, 1981. FREIRE, P. Pedagogy of the oppressed. New York: Herder and Herder, 1972. FREUDENTHAL, H. Revisiting mathematics education: China lectures. Dordrecht: Kluwer Academic,2002. Available at:. Accessed in: 6 dec. 2013. GERDES, P. Le cercle et le carré: créativité géométrique, artistique et symbolique de vannières et vanniers d'Afrique, d'Amérique, d'Asie et d'Océanie. Paris: L'Harmattan, 2000. GRAMSCI, A. Selections from the Prison Notebooks. New York: International, 1971. HANSEN, A. Comprehension of text. Can additional verbal explanations enhance students' performance in solving text-based mathematical assignments? (in Danish). MONA - Matematik- og Naturfagsdidaktik - Tidsskrift for undervisere, formidlere og forskere, 2014. Submitted. HOUSER, N.; KLOESEL, C. (Ed.). The Essential Peirce, Selected philosophical writings. v. 1 (1867–1893); v. 2 (1893–1913), Peirce Edition Project. Bloomington and Indianapolis, IN: Indiana University, 1992, 1998. HØYRUP, J. Lengths, widths, surfaces: a portrait of Old Babylonian algebra and its kin. (Studies and Sources in the History of Mathematics and Physical Sciences). New York: Springer, 2002. HUSSERL, E. The origin of geometry. Appendix VI.In: HUSSERL, E. The crisis of European sciences and transcendental phenomenology. An introduction to phenomenological philosophy. Evanston, IL: Northwestern University Press, 1970. p. 353-378. KEITEL, C.; KOTZMANN, E.; SKOVSMOSE, O. Beyond the tunnel vision: Analysing the relationship between mathematics, society, and technology. In: KEITEL, C.; RUTHVEN, K. (Ed.). Learning from computers: Mathematics education and technology. Berlin: Springer, 1993. p. 243-279. KIERKEGAARD, S. Either/Or. Volume I. Princeton: Princeton University, 1959. KNIJNIK, G.; WANDERER, F. Mathematics education and differential inclusion: a study about two Brazilian time–space forms of life. ZDM Mathematics Education,v. 42, n. 3-4, p. 349–360, 2010. KRANTZ, S. G. A primer of mathematical writing. Providence, Rhode Island: American Mathematical Society, 1997. LENIN, V. I. Materialism and empirio-criticism. Lenin Collected Works. v. 14, p. 17-362. Moscow: Progress Publishers, 1909. Available at: Marxists Internet Archive, www.marxists.org/. LURIA, A. R. The man with a shattered world. New York: Basic Books,1972. MANIN, Y. A course in mathematical logic for mathematicians. 2. ed. Chapters I– VIII. Graduate Texts in Mathematics, 53. New York: Springer, 2010. MARX, K..Introduction to the critique of Hegel's philosophy of right, 1844.Quoted from KARL MARX, FRIEDRICH ENGELS. Werke, Band 1. Berlin: Dietz Verlag, 1972. English translation available at: . MARX, K. Theses on Feuerbach, 1845.Quoted from KARL MARX, FRIEDRICH ENGELS. Werke, Band 3. Berlin: Dietz Verlag, 1969. English translation available at: . MESQUITA, M.; PAIS, A.; FRANÇOIS, K.Communitarian mathematics education.Walking into boundaries. EM TEIA - Revista de Educação Matemática e Tecnológica Iberoamericana, v. 5, n. 1, 2014. MIGUEL, A.; MENDES, I. A Mobilizing histories in mathematics teacher education: memories, social practices, and discursive games. ZDM Mathematics Education, v. 42, n. 3-4, p. 381–392, 2010. MINSKY, M. Computation: finite and infinite machines. Englewood Cliffs, N.J.: Prentice-Hall, 1967. MOON, B. The new maths curriculum controversy: an international story. Studies in curriculum history series, v. 5. London: Falmer, 1986. NAUR, P. Computing: a human activity. New York: ACM/Addison-Wesley, 1992. OTTE, M. Das Formale, das Soziale und das Subjektive: EineEinführung in die Philosophie und Didaktik der Mathematik. Frankfurt am Main: SuhrkampTaschenbuchWissenschaft, 1994. OTTE, M. Mathematik und Verallgemeinerung - Peirce' semiotisch-pragmatischeSicht. Philosophia Naturalis, v. 34, n. 2, p. 175–222, 1997. PEIRCE, C. S. The Fixation of Belief. Popular Science Monthly, v. 12, p. 1-15, 1877. Availableat: . PINKER, S. The language instinct. New York: William Morrow, 1994. RADFORD, L. The anthropology of meaning. Educational Studies in Mathematics, v. 61, p. 39–65, 2006. ROSSER, J. B. Logic for mathematicians. New York, Toronto, London: McGraw- Hill,1953. Available at: . Accessed in: 6 dec. 2013. SAHLBERG, P. Finnish lessons: what can the world learn from educational change in Finland? The series on school reform. New York: Teachers College,2011. SÁNCHEZ, M. How to stimulate rich interactions and reflections in online mathematics teacher education? Thesis (PhD in Mathematics Education) Department of Science, Systems and Models, IMFUFA, Roskilde University, Roskilde, Denmark, 2010. SCHUBRING, G. Der Aufbruchzum “funktionalenDenken”: Geschichte des Mathematikunterrichts im Kaiserreich. N.T.M., v. 15, p. 1-17, 2007. SCIENCE OBITUARIES: ‘Israel Gelfand’. The Telegraph. 26 Oct. 2009. SFARD, A. On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics,v. 22, n. 1, p. 1-36, 1991. SJØBERG, S. Naturfagsomallmenndannelse: en kritiskfagdidaktikk [Norwegian, Science education as general knowledge: a critical subject-related education]. 3. ed. Oslo: Gyldendalakademisk,2009. SKOVSMOSE, O. Towards a philosophy of critical mathematics education. Dordrecht: Kluwer, 1994. WITTGENSTEIN, L. Philosophical investigations. Oxford: Blackwell, 2009.