GeoGebra as a learning mathematical environment
Tipo de documento
Lista de autores
Dos-Santos, José Manuel y Batista, Alexandre
Resumen
GeoGebra, a software system for dynamic geometry and algebra in the plane, since its inception in 2001, has gone from a dynamic geometry software (DGS), to a powerful computational tool in several areas of mathematics. Powerful algebraic capabilities have joined GeoGebra, an efficient spreadsheet that can deal with many kinds of objects, an algebraic and symbolic calculation system and several graphical views that expand the possibility of multidimensional representations, namely, by using colouring domain techniques, expanded to representations in the Riemann sphere, making this DGS a powerful research tool in mathematics. On the other hand, GeoGebra can create applications easily and export to HTML, and the possibility to quickly integrating these applets in several web platforms provides this DGS with an excellent way to create strong collaborative environments to teach and learn mathematics. Recently was added to GeoGebra powerful capabilities that transform this software a real Learning Mathematical Environment, using the GeoGebraBooks and GeoGebraGroups, plain of collaborative functionality between students and teachers.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Gestión de aula | Gráfica | Simbólica | Software
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Hohenwarter, M. (2002). GeoGebra-a software system for dynamic geometry and algebra in the plane. Unpublished master’s thesis, University of Salzburg, Austria. Jarvis, D., Hohenwarter, M., & Lavicza, Z. (2011). Geogebra, Democratic Access, and Sustainability. In Model-Centered Learning (pp. 231-241). SensePublishers. Breda, A., Dos Santos, J. & Trocado, A. (2013). O GeoGebra para além da segunda dimensão. Indagatio Didactica, 5(1). Retrieved from http://revistas.ua.pt/index.php/ID/article/view/2421 , acceded at 24/02/2016. ISSN: 1647-3582 Breda, A., & Dos Santos, J. (2015). The Riemann Sphere in GeoGebra. Sensos-e, 2(1). Retrieved from http://sensos-e.ese.ipp.pt/?p=7997&lang=en , acceded at 24/02/2016. ISSN: 2183-1432. Abar, C. A., & Barbosa, L. M. (2010, July). A Composition of Technologies–Geogebra And Distance Learning. In First North American GeoGebra Conference (p. 106). i Macias, R. (2011) Anàlisi del docent en l’entorn del projecte eduCAT1x1. El cas de la Geometria plana a primer d’ESO. Màster de recerca en didàctica de les matemàtiques i de les ciències experimentals. UNIVERSITAT AUTÒNOMA DE BARCELONA Marić, F., Petrović, I., Petrović, D., & Janičić, P. (2012). Formalization and implementation of algebraic methods in geometry. arXiv preprint arXiv:1202.4831. Ivan Petrović & Predrag Janičić (2012): Integration of OpenGeoProver with GeoGebra. Available at http://argo.matf.bg.ac.rs/events/2012/fatpa2012/slides/IvanPetrovic.pdf Baeta, N., & Quaresma, P. (2013). The full angle method on the OpenGeoProver. In CICM Workshops. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., & Weitzhofer, S. (2015). Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning, 55(1), 39-59. Fernàndez Valiente, J. (2012). Mòdul de GeoGebra per a Moodle. Santos, V., & Quaresma, P. (2013). Plataforma Colaborativa para a Geometria. Indagatio Didactica, 5(1). Quaresma, P., Santos, V., & Bouallegue, S. (2013). The web geometry laboratory project. In Intelligent Computer Mathematics (pp. 364-368). Springer Berlin Heidelberg. Stahl, G. (2012). Dynamic-geometry activities with GeoGebra for virtual math teams. Web: http://GerryStahl.net/pubactivities.pdf . Stahl, G., Rosé, C. P., O’Hara, K., & Powell, A. B. (2010, July). Supporting group math cognition in virtual math teams with software conversational agents. In First North American GeoGebra Conference (p. 196).