Difficulties to semantically congruent translation of verbally and symbolically represented algebraic statements
Tipo de documento
Lista de autores
Castro, Encarnación, Cañadas, María C., Molina, Marta y Rodríguez-Domingo, Susana
Resumen
This paper describes the difficulties faced by a group of middle school students (13- to 15-year-olds) attempting to translate algebraic statements written in verbal language into symbolic language and vice-versa. The data used were drawn from their replies to a written quiz and semi-structured interviews. In the former students were confronted with a series of algebraic statements and asked to choose the sole translation, of four proposed for each, that was semantically congruent with the original. The results show that most of the errors detected were due to arithmetic issues, especially around the distinction between product and exponent or sum and product in connection with the notions of perimeter and area. As a rule, the error distribution by type varied depending on the type of task involved.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Adu-Gyamfi, K., Stiff, L. V., & Bossé, M. J. (2012). Lost in translation: Examining translation errors associated with mathematical representations. School Science and Mathematics, 112(3), 159-170. Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the learning of Mathematics, 14(3), 24-35. Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011). Assessing the difficulty of mathematical translations: Synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6(3), 113-133. Bossé, M. J., Adu-Gyamfi, K., & Chandler, K. (2014). Students' differentiated translation processes. International Journal for Mathematics Teaching & Learning. Consultado el 17/01/2019 de http://www.cimt.org.uk/journal/ Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663-689. Cañadas, M. C., & Figueiras, L. (2011). Uso de representaciones y generalización de la regla del producto [Use of representations and generalisation of the multiplication principle]. Infancia y aprendizaje, 34(4), 409-425. Cañadas, M. C., Molina, M., & del Río, A. (2018). Meanings given to algebraic symbolism in problem posing. Educational Studies in Mathematics, 98(1), 19-37. Capraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middle-school students meaningfully translate from words to mathematical symbols? Reading Psychology, 27(2-3), 147-164. Cerdán, F. (2010). Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores [Incorrect equalities developed in the algebraic translation process: A catalog of errors]. PNA, 4(3), 99-110. Colera, J., Martínez, M., Gaztelu, I., & Oliveira, M. J. (2008). Matemáticas 4º educación secundaria, opción A. Madrid, Spain: Anaya. Council of Chief State School Officers (CCSSO) and the National Governors Association Center for Best Practices (NGA Center) (2016). Available at http://www.corestandards.org/Math/? Crowley, L., Thomas, M., & Tall, D. (1994). Algebra, symbols, and translation of meaning. In Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education (V.2, pp. 240-247). Drouhard, J. P., & Teppo, A. R. (2004). Symbols and language. In The Future of the Teaching and Learning of Algebra The 12thICMI Study (pp. 225-264). Springer, Dordrecht. Duval, R. (1993). Registros de representación semiótica y funcionamiento cognitivo del pensamiento [Register of semiotic representation and cognitive functioning of thinking]. Annales de Didactique et de Sciencies Cognitives, 5, 37-65. Duval, R. (1999). Representation, Vision and Visualization: Cognitive Functions in Mathematical Thinking. Basic Issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3-26). Morelos, Mexico: PME-NA. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131. Fernández-Millán, E. F., & Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas [Inquiry into secondary students’ conceptual knowledge of algebraic symbolism through problem posing]. Enseñanza de las Ciencias, 34(1), 53-71. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: The Netherlands: Reidel. Forman, E.A., McCormick, D.E. y Donato R. (1998). Learning what counts as a mathematical explanation. Linguistics and Education, 9(4), 313-339 Goldin, G., & Shteingold, N. (2001). Systems of representations and the developments of mathematical concepts. In A. Couco & F. Curcio (Eds.), The roles of representation in school mathematics (pp. 1-23). Reston, VA: National Council of Teachers of Mathematics. Hernández, R., Fernández, C., & Baptista, P. (2003). Metodología de la investigación (3ª ed) [Research methodology]. México, DF: Mac Graw Hill. Janvier, C. (1987). Translation process in mathematics education. In C. Janvier (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 27-31). Hillsdale, NJ: Lawrence Erlbaum Associates. Jupri, A., & Drijvers, P. H. M. (2016). Student difficulties in mathematizing word problems in algebra. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2481-2502. Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515-556). New York: Macmillan. Kaput, J. J. (1998). Teaching and learning a new algebra with understanding. Dartmouth, MA: National Center for Improving Student Learning and Achievement in Mathematics and Science. Kaput, J. J., Sims-Knight, J. E. y Clement, J. (1985). Behavioral objections: A response to Wollman. Journal for Research in Mathematics Education, 16(1), 56-63. Kar, T. (2016). Prospective middle school mathematics teachers’ knowledge of linear graphs in context of problem-posing. International Electronic Journal of Elementary Education, 8(4), 643. Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th International Congress on Mathematical Education: Selected lectures (pp. 271-290). Seville, Spain: S.A.E.M. Thales. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707-762). Charlotte, NC: Information Age Publishing. Kieran, C. & Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica [The learning of school algebra from a psychological perspective]. Enseñanza de las Ciencias, 7(3), 229-240. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press. Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129-164. Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Erlbaum. MacGregor, M., & Stacey, K. (1993). Cognitive models underlying students’ formulation of simple linear equations. Journal for Research in Mathematics Education, 24(3), 217-232. MacGregor, M., & Stacey, K. (1997). Students ‘understanding of algebraic notation: 11–15. Educational studies in mathematics, 33(1), 1-19. Molina, M. (2014). Traducción del simbolismo algebraico al lenguaje verbal: indagando en la comprensión de estudiantes de diferentes niveles educativos [Translation from algebraic symbolism to verbal language: investigating the students’ understanding in different educative levels]. Gaceta de la Real Sociedad Matemática Española, 17(3), 559-579. Molina, M., Rodríguez-Domingo, S., Cañadas, M. C., & Castro, E. (2017). Secondary school students’ errors in the translation of algebraic statements. International Journal of Science and Mathematics Education, 15(6), 1137-1156. Nathan, M. J., Masarik, K., Stephens, A. C., Alibali, M. W., & Koedinger, K. R. (2010). Enhancing Middle School students’ representational fluency: A classroom-based study. Downloaded the 14/11/2016 from http://wcereb.ad.education.wisc.edu/docs/ workingpapers/Working_Paper_No_2010_09.pdf. Niss, M., & Højgaard, T. (Eds.) (2011). Competencies and mathematical learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde, Denmark: IMFUFA. OECD (2005). Informe PISA 2003. Aprender para el mundo de mañana [Learning for tomorrow world]. Madrid, Spain: Santillana. Rico, L. (2006). La competencia matemática en PISA [Mathematical competence in PISA]. PNA,1(2), 47-66. Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación [About the representation and comprehension notions in the research]. PNA, 4(1), 1-14. Rodríguez-Domingo, S., & Molina, M. (2013). De lo verbal a lo simbólico: un paso clave en el uso del álgebra como herramienta para la resolución de problemas y la modelización matemática [From verbal to symbolic: A key step in the use of algebra as a tool for problem solving and mathematical modelling]. In L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina e I. Segovia (Eds.), Investigación en Didáctica de la Matemática. Homenaje a Encarnación Castro (pp. 111-118). Granada, Spain: Comares. Rodríguez-Domingo, S., Molina, M., Cañadas, M. C., & Castro, E. (2015). Errores en la traducción de enunciados algebraicos entre los sistemas de representación simbólico y verbal [Errors in the translation of algebraic statements between symbolic and verbal representation systems]. PNA. Revista de Investigación en Didáctica de la Matemática, 9(4), 273-293. Ruano, R. M., Socas, M. M., & Palarea, M. M. (2008). Análisis y clasificación de errores cometidos por alumnos de secundaria en los procesos de sustitución formal, generalización y modelización en álgebra [Secondary students’ error analysis and classification in formal substi- tution, generalization and modelling process in algebra]. PNA, 2(2), 61-74. Schleppegrell M. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading and Writing Quarterly, 23, 139-159 Socas, M. (1997). Dificultades, obstáculos y errores en el aprendizaje de las matemáticas en la educación secundaria [Difficulties, obstacles, and errors in the learning of mathematics in Secondary Education]. In L. Rico (Ed.), La Educación Matemática en la Enseñanza Secundaria (pp. 125-154). Barcelona, Spain: Horsori. Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. In B. Moses (Ed.), Algebraic thinking, Grades K–12: Readings from NCTM’s School-Based Journals and Other Publications (pp. 7-13). Reston, VA: National Council of Teachers of Mathematics.