Sumisión, alienación y (un poco de) esperanza: hacia una visión cultural, histórica, ética y política de la enseñanza de las matemáticas
Tipo de documento
Autores
Lista de autores
Radford, Luis
Resumen
En este artículo abordo el problema que plantea la enseñanza y el aprendizaje de las matemáticas, cuando dicho problema es visto desde una perspectiva sociocultural. Para ello, trazo brevemente algunos elementos del recorrido que, me parece, movieron el discurso de la enseñanza de las matemáticas de un discurso que la justificaba como un esfuerzo educativo de difusión del saber a un discurso que emerge a fines del siglo pasado y principios de este y que se caracteriza por la búsqueda de nuevos puntos de referencia para repensar la finalidad de la enseñanza de las matemáticas a la hora actual. Esta breve incursión en la historia de nuestra disciplina me da la pauta para sugerir una nueva posibilidad que conlleva a un replanteamiento y cuestionamiento de la disciplina, de su naturaleza y de los objetivos de su enseñanza dentro del ámbito de una economía global y de las tensiones que de ella emergen.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Alrø, H., Ravn, O., & Valero, P. (2010). Critical mathematics education: Past, present and future. Rotterdam: Sense. Berki, R. (1979). On the nature and origins of Marxs concept of labor. Political Theory, 7 (1), 35-56. Bingham, C., & Biesta, G. (2010). Jacques Rancière. Education, truth, emancipation. London: Continuum. Bourdieu, P., & Passeron, J. (1990). Reproduction in education, society and culture. London: Sage. Brown, T. (2011). Mathematics education and subjectivity: Cultures and cultural renewal. Springer Verlag. Retrieved from Google Scholar. Cole, M., & Hill, D. (2002). Resistence postmodernism –progressive politics or rhetorical left posturing? In D. Hill, P. McLaren, M. Cole, & G. Rikowski (Eds.), Marxism against postmodernism in educational theory (pp. 89-107). Lanham: Lexington Books. DAmbrosio, U. (2006). Ethnomathematics. Rotterdam: Sense Publishers. DAmbrosio, U. (2013). Las bases conceptuales del programa etnomatematica. 14º Encuentro Colombiano de Matemática Educativa. Universidad Del Atlántico, 9-11 Octobre 2013. Deleuze, G. (1994). Difference and repetition. (P. Patton Trans.). New York: Columbia University Press. (Original work published 1968) Donham, D. L. (1999). History, power, ideology: Central issues in marxism and anthropology. Berkeley: University of California Press. Dupré, L. (1983). Marxs social critique of culture. New Haven: Yale University Press. Foucault, M. (1966). El pensamiento del afuera. http://www.philosophia.cl/biblioteca/Foucault/Foucault el pensamiento del afuera.pdf. Foucault, M. (1969). Qu’est-ce qu’un auteur? [Qué es un autor?]. http://elpsicoanalistalector.blogspot. ca/2009/06/michel-foucault-quest-ce-quun-auteur.html Foucault, M. (1993). ¿Qué es la ilustración? Revista de Filosofía, 3, 5-18. Fraser, I. (1998). Hegel and marx. The concept of need. Edinburgh: Edinburgh University Press. Freire, P. (2004). Pedagogy of indignation. Boulder, Colorado: Paradigm Publishers. Godelier, M. (2010). Lidéel et le matériel. Pensée, économie, sociétés [the ideal and the material. Thought, economy, societies]. Paris: Champs essais. Hardt, M., & Negri, A. (2001). Empire. Harvard University Press Cambridge, MA. Hegel, G. W. F. (1977). Hegels phenomenology of spirit. Oxford: Oxford University Press (First edition, 1807). Henry, M. (2003). Phenomenology of life. Journal of Theoretical Humanities, 8(2), 97-110. Herbel-Eisenmann, B., Choppin, J., Wagner, D., & Pimm, D. (2012). Equity in discourse for mathematics education. New York: Springer. Hyppolite, J. (1961). Logique et existence [logic and existence]. Paris: Presses Universitaires de France. Jablonka, E., Wagner, D., & Walshaw, M. (2013). Theories for studying social, political and cultural dimensions of mathematics education. In M. Clements, M. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 41-67). New York: Springer. Kamenka, E. (1969). Marxism and ethics. London: Macmillan St Martins Press. Knijnik, G. (2000). Some words about "researching mathematics education from a critical perspective". In Proceedings of the 2nd international conference "mathematics education and society". Retrieved from http://nonio.fc.ul.pt/mes2/. Lave, J., & McDermont, R. (2002). Estranged labor learning. Outlines, 1, 19-48. Leontev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, NJ: Prentice-Hall. Lerman, S. (2006). Socio-cultural research in PME. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future. Rotterdam: Sense Publishers. Lévinas, E. (2006). Totalité et infini. Essai sur lexteriorité [totality and infinity. An essay on exteriority]. Paris: Le livre de poche. Lukács, G. (2012). Ontologie de lêtre social. Lidéologie, laliénation [ontology of the social being. Ideology, alienation]. Paris: Delga. Marx, K. (1859). Contribución a una crítica de la economía política. Telecargado de http://pcarriate. es/jdownloads/K. Marx y F. Engels/Marx - Contribucion a la critica de la economia politica.pdf Marx, K. (1998). The German ideology, including theses on Feuerbach and introduction to the critique of political economy. New York: Prometheus Books. Massumi, B. (2002). Parables for the virtual. Movement, affect, sensation. Durham & London: Duke University Press. Mészáros, I. (2010). Social structure and forms of consciousness. New York: Monthly Review Press. Popkewitz, T. (2004). The alchemy of the mathematics curriculum: Inscriptions and the fabrication of the child. American Educational Research Journal, 41(1), 3-34. Presmeg, N., & Radford, L. (2008). On semiotics and subjectivity: Signifying “students”, “teachers” and “mathematics”: A reading of a special issue. Educational Studies in Mathematics, 69(3), 265-276.Quic, A. (s/f). Vista de ojo de pájaro. http://www.novica.com/artistdetail/index.cfm?faid=7315 Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 215-234). Rotterdam: Sense Publishers. Radford, L. (2007). Towards a cultural theory of learning. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the european society for research in mathematics education (CERME – 5) (pp. 1782-1797). Larnaca, Cyprus. Radford, L. (2011). Classroom interaction: Why is it good, really? Educational Studies in Mathematics, 76, 101-115. Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7-44. Roth, W. -, & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam: Sense Publishers. Skovsmose, O. (2008). Critical mathematics education for the future. In M. Niss (Ed.), ICME-10 proceedings. (Retrieved on December 20 2010 from http://www.icme10.dk/proceedings/pages/regular_pdf/RL_Ole_Skovsmose.pdf). Denmark: IMFUFA, Department of Science, Systems and Models, Roskilde University. Slavin, R. E. (1980). Cooperative learning. Review of Educational Research, 50(2), 315-342. Walshaw, M. (2004). The pedagogical relations in postmodern times. In M. Walshaw (Ed.), Mathematics education within the postmodern (pp. 121-139). Greenwich, Connecticut: Information Age Publishing. Walshaw, M. (2012). Towards an understanding of ethical practical action in mathematics education: Insights from contemporary inquiries . In S. Oesterle, D. Allan, & P. Liljedahl (Eds.), Proceedings of the annual meeting of the canadian mathematics education study group / groupe canadien détude en didactique des mathématiques (pp. 3-12). Laval: CMESG/GCEDM