Generalizing is necessary or even unavoidable
Tipo de documento
Autores
Lista de autores
Otte, Miguel F., Mendonça, Tânia Maria y de-Barros, Luiz
Resumen
The problems of geometry and mechanics have driven forward the generalization of the concepts of number and function. This shows how application and generalization together prevent that mathematics becomes a mere formalism. Thoughts are signs and signs have meaning within a certain context. Meaning is a function of a term: This function produces a pattern. Algebra or modern axiomatic come to mind, as examples. However, strictly formalistic mathematics did not pay sufficient attention to the fact that modern axiomatic theories require a complementary element, in terms of intended applications or models, not to end up in a merely formal game.
Fecha
2015
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Agdestein, S. (2013). How Magnus Carlsen became the Youngest Chess Grandmaster in the World. Alkmaar, The Netherlands: New Chess. Aristotle (1960). Posterior Analytics. Topics. (Loeb Classical Library No. 391.) Cambridge, MA: Harvard University Press. Belhoste, B. (1991). Augustin-Louis Cauchy. New York, NY: Springer. Bochner, S. (1974). Mathematical reflections. The American Mathematical Monthly, 81, 827-852. Carrol, L. (1895). What the tortoise said to Achilles. Mind, 4, 278-80. Cassirer, E. (1910). Substanzbegriff und funktionsbegriff [Substance and function]. Berlin, Germany: Bruno Cassirer. Cavell, S. (2008). Must we mean what we say? Cambridge, United Kingdom: UP. Chatelet, F. (1992). Une histoire de la raison [History of the reason]. Paris, France: Editions du Seuil. Dehn M. (1983). Mentality of the mathematician. Mathematical Intelligencer, 5(2), 18-26. Durkheim, E. (1995). The elementary forms of the religious life. New York, NY: The Free Press. Eisenstein, E. (2005). The printing revolution in early modern Europe. Cambridge, United Kingdom: University Press. Gödel, K. (1944). Russell’s mathematical logic. In P. A. Schilpp (Ed.), The philosophy of Bertrand Russell (pp. 123-154). La Salle, France: Open Court. Gödel, K. (2001). Collected works: Volume III unpublished essays and lectures. New York, NY: Oxford University Press. Goodman, N. (1965). Fact, fiction and forecast. Indianapolis, IN: Bobbs-Merril. Hilbert, D. (1964). Über das unendliche [About the infinite]. Darmstadt, Germany: Hilbertiana. Hustvedt, S. (2012). Living, thinking, looking. London, United Kingdom: Sceptre. Kant, I. (1787). Critique of pure reason [English translation by Norman Kemp Smith, 1929]. London, United Kingdom: Macmillan. Klein, J. (1985). Lectures and essays. Annapolis, MD: St John’s College Press. Klein, S. B. (2014). The two selves. New York, NY: Oxford University Press. Koetsier, T. (1991). Lakatos’ philosophy of mathematics. Amsterdam, The Netherlands: North-Holland. Lovejoy, A. O. (1964). The great chain of being. Cambridge, MA: Harvard University Press. Mueller, I. (1969). Euclid’s elements and the axiomatic method. The British Journal for the Philosophy of Science, 20, 289-309. Otte, M. (2003a). Complementary, sets and numbers. Educational Study in Mathematics, 53(3), 203-228. Otte, M. (2003b). Does mathematics have objects? What sense? Synthese, 134, 181-216. Parmentier, R. (1994). Signs in society. Bloomington, IN: Indiana University Press. Peirce, C. S. (1857-1886). Writings of Charles S. Peirce: A chronological edition. Peirce Edition Project (Eds.). Indiana, IN: Indiana University Press. Peirce, C. S. (1892). The law of mind. The Monist, 2(4), 533-559. Peirce, C. S. (1931-1935). Collected Papers of Charles Sanders Peirce (Vols. 1-6. edited by C. Hartshorne & P. Weiss; Vols. 7-8 edited by A. W. Burks). Cambridge, MA: Belknap Press of Harvard University Press. Peirce, C. S. (1966). How to make our ideas clear. New York, NY: Dover Publications. Quine, W. V. (1990). The roots of reference. La Salle, IL: Open Court. Rorty, R. (1979). Philosophy and the mirror of nature (PMN). Princeton, United Kingdom: Princeton University Press. Rorty, R. (1989). Contingency, irony, solidarity (CIS). Cambridge, United Kingdom: Cambridge University Press. Russell, B. (1967). Introduction to mathematical philosophy. London, United Kingdom: Routledge. Spengler, O. (1918). Der untergang des abendlandes [The decline of the west]. Darmstadt, Germany: Bibliographisches Institut. Stolzenberg, G. (1984). Can an inquiry into the foundations of Mathematics tell us anything interesting about the mind. In P. Watzlawik (Ed.), Invented reality (pp. 257-308). Nueva York, NY: W. W. Norton Inc. Valéry, P. (1998). Leonardo da Vinci. Frankfurt, Germany: Suhrkamp. Wertheimer, M. (1945). Productive thinking. New York, NY: Harper.