Secondary School Students’ Errors in the Translation of Algebraic Statements
Tipo de documento
Lista de autores
Molina, Marta, Rodríguez-Domingo, Susana, Cañadas, María C. y Castro, Encarnación
Resumen
In this article, we present the results of a research study that explores secondary students’ capacity to perform translations of algebraic statements between the verbal and symbolic representation systems through the lens of errors. We classify and compare the errors made by two groups of students: one at the beginning of their studies in school algebra and another one completing their studies on algebra in compulsory education. This comparison allows us to detect errors which require specific attention in instruction due to its persistence and to identify errors that disappear as students advance in their study of algebra. The results and conclusions have pedagogic value to inform instruction and also lead to backed conjectures and research questions to push forwards research on student’s translation capacity and students’ knowledge of algebraic symbolism.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
15
Número
6
Rango páginas (artículo)
1137-1156
Referencias
Ambrose, R., & Molina, M. (2014). Spanish/English bilingual students’ comprehension of story problem texts. International Journal of Science and Mathematics Education. 12(6), 1469-1496. DOI 10.1007/s10763-013-9472-2. Bachelard, G. (1938). La formation de l’esprit Scientifique [The formation of the scientific spirit]. Paris: Vrin. Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011a). Assessing the difficulty of mathematical translations: synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6(3), 113-133. Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011b). Translations among mathematical representations: Teacher beliefs and practices. International Journal of Mathematics Teaching and Learning, June. Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques [The epistemologic obstacles in mathematics problems]. Reserches en Didactique des Mathematiques, 4(2), 165-198. Cañadas, M. C., Castro, E., & Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3º y 4º de Educación Secundaria Obligatoria en el problema de las baldosas. PNA, 2(3), 137-151. Castro, E., & Castro, E. (1997). Representaciones y modelización. In L. Rico (Ed.), La Educación Matemática en la enseñanza secundaria (pp. 95-124). Barcelona, Spain: Horsori. Cerdán, F. (2008a). Estudio sobre la familia de problemas aritméticos-algebraicos [Study about the family of arithmetic-algebraic problems]. Valencia, Spain: Server de Publicacions de la Universitat de València. Cerdán, F. (2008b). Las igualdades producidas en el proceso de traducción algebraico: estudio de las igualdades correctas [The equalities produced in the algebraic translation process: study of correct equalities]. In R. Luengo, B. Gómez, M. Camacho, & L. Blanco (Eds.), Investigación en educación matemática XII (pp. 257-272). Badajoz, Spain: Sociedad Española de Investigación en Educación Matemática. Cerdán, F. (2010). Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores [Incorrect equalities produced in the process of algebraic translation: a catalogue of errors]. PNA, 4(3), 99-110. Corbin, J., & Strauss, A. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Londres: Reino Unido: Sage. Drijvers, P. y Hendrikus, M. (2003). Learning algebra in a computer algebra environment: design research on the understanding of the concept of parameter. Tesis doctoral no publicada, Universidad de Utrecht, Utrecht. Ernest, P. (2006). A semiotic perspective of mathematical activity: The case of number. Educational Studies in Mathematics, 61(1), 67–101 Fernández-Millán E. & Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas [Inquiry into secondary students' conceptual knowledge of algebraic symbolism by means of problem posing]. Enseñanza de las Ciencias, 34(1), 53–71. doi: 10.5565/rev/ensciencias.1455 Friedlander, A., & Tabach, M. (2001). Promoting multiple representations in algebra. In A. A. Cuoco (Ed.), Yearbook of the National Council of Teachers of Mathematics: The roles of representation in school mathematics (pp. 173-185). Reston, Virginia: National council of teachers of mathematics. Goldin, G. (1998). Representational Systems, Learning, and Problem Solving in Mathematics. Journal of Mathematical Behavior, 17(2), 137-165. Goldin, G. (2002). Representation in mathematical learning and problem solving. In L. English (Ed.), Handbook of international research in mathematics education (pp. 197-218). Mahwah, NJ: Lawrence Erlbaum Associates. Gómez, P. (2007). Desarrollo del conocimiento didáctico en un plan de formación inicial de profesores de matemáticas de secundaria [Development of didactical knowledge in a initial training plan for secondary mathematics teachers]. Doctoral thesis. Granada, Spain: Universidad de Granada. Gómez-Granell, C. (1989). La adquisición del lenguaje matemático: un difícil equilibrio entre el rigor y el significado [The adquisition of mathematical language: a difficult equilibrium between rigor and meaning]. CL & E: Comunicación, Lenguaje y Educación, 3-4, 5-16. González-Calero, J. A., Arnau, D., & Puig, L. (2013). Dificultades en la construcción de nombres de cantidades durante la resolución algebraica de problemas verbales por estudiantes de primaria [Difficulties in the construction of names of quantities during algebraic solving of verbal problems by elementary students]. In A. Berciano, G. Gutiérrez, A. Estepa, & N. Climent (Eds.), Investigación en Educación Matemática XVII (pp. 301-310). Bilbao, Spain: Sociedad Española de Investigación en Educación Matemática. Hernández, C. R., Fernández, C., & Baptista, P. (1991). Metodología de la investigación [Research methodology]. México DC: McGraw Hill. Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. (pp. 65-97). Nueva York, NY: MacMillan. Hoch, M., & Dreyfus, T. (2005). Students’ difficulties with applying a familiar formula in an unfamiliar context. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 145-152). Melbourne, Australia: University of Melbourne. Hoffman, M. H. G. (2006). What is a “semiotic perspective”, and what could it be? Some comments on the contributions to this special issue. Educational Studies in Mathematics, 61(1), 279–291 Isik, C., & Kar, T. (2012). The analysis of the problems the pre-service teachers experience in posing problems about equations. Australian Journal of Teacher Education, 37(9), 93-113. Janvier, C. (1987). Translation processes in mathematics Education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics. Hisllsdale. NJ: Lawrence Erlbaum Associates. Kaput, J. (1989). Linking representations in the symbolic systems of algebra. In S. Wagner & C. Kieran (Eds.), Research agenda for mathematics education: Research issues in the learning and teaching of algebra (pp. 167-194). Reston, VA: National Council of Teachers of Mathematics. Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515-556). New York, NY: MacMillan. Kaput, J., Sims-Knight, J., & Clement, J. (1985). Behavioral objections: A response to Wollman. Journal for Research in Mathematics Education, 16(1), 56-63. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707-62). Charlotte, NC: Information Age Publishing. Kirshner, D. (1989). The visual sintax of algebra. Journal for Research in Mathematics Education, 20(3), 274-287 Kirshner, D. & McDonald J. (1992). Translating English Sentences to Algebraic Notation: methodological and epistemological considerations. Unpublished document. Lousiana State University. Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Earlbaum Associates. MacGregor, M., & Stacey, K. (1993). Cognitive models underlying students' formulation of simple linear equations. Journal for Research in Mathematics Education, 24(3), 217-232. Ministerio de Educación y Ciencia (2006). Real Decreto 1631/2006, de 29 de diciembre, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria [Royal Decree 1631/2006, of 29 December, by which the corresponding core curriculum for compulsory secondary education is established]. Boletín Oficial del Estado, 5, 677-773. Mitchell, J. M. (2001). Interactions between natural language and mathematical structures: the case of “wordwalking”. Mathematical Thinking and Learning, 3(1), 29-52. Molina, M. (2014). Traducción del simbolismo algebraico al lenguaje verbal: indagando en la comprensión de estudiantes de diferentes niveles educativos. Gaceta de la Real Sociedad Matemática Española, 17(3), 559-579.National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author. National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author. Pope S., & Sharma, R. (2001). Symbol sense: Teacher’s and student’s understanding. Proceedings of the British Society for Research into Learning Mathematics, 21(3). Rach, S., Ufer, S., & Heinze, A. (2013). Learning from errors: effects of teachers’ training on students’ attitudes towards and their individual use of errors. PNA, 8(1), 21-30. Resnick, L., Cauzinille-Marmèche, E., & Mathieu, J. (1987). Understanding algebra. In A. Sloboda Thon & D. Rogers (Eds.), Cognitive processes in mathematics (pp. 169–225). Oxford, United Kingdom: Clarendon Press. Rico, L. (1995). Errores y dificultades en el aprendizaje de las matemáticas [Errors and difficulties in mathematics learning]. In J. Kilpatrick, P. Gómez, & L. Rico (Eds.), Educación Matemática. Errores y dificultades de los estudiantes. Resolución de problemas. Evaluación. Historia (pp. 69-108). Bogotá, Colombia: una empresa docente. Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación en Educación Matemática [About the notions of representation and understanding in mathematics education research]. PNA, 4(1), 1-14. Rittle-Johnson, B. & Schneider, M. (2015). Developing Conceptual and Procedural Knowledge of Mathematics. In R. C. Kadosh y A. Dowker (Eds.), Oxford Handbook of Numerical Cognition (pp. 1118-1134). Oxford, UK: Oxford University Press. Rodríguez-Domingo, S. (2015). Traducción entre los sistemas de representación simbólico y verbal: un estudio con alumnado que inicia su formación algebraica en secundaria [Translations between the symbolic and verbal representation systems: an study with students at the beggining of their algebraic education in secondary]. Tesis doctoral, Universidad de Granada, Granada. Socas, M. (1997). Dificultades, obstáculos y errores en el aprendizaje de las matemáticas en la educación secundaria [Difficulties, obstacles and erros in mathematics learning in secondary education]. In L. Rico (Eds.), La Educación Matemática en la enseñanza secundaria (pp. 125-154). Barcelona, Spain: Horsori. Vega-Castro, D., Molina, M., & Castro, E. (2012). Sentido estructural de estudiantes de bachillerato en tareas de simplificación de fracciones algebraicas que involucran igualdades notables. Relime, 15(2), 233-258. Wagner, S., & Parker, S. (1993). Advancing algebra. In P. S. Wilson (Ed), Research ideas for the classroom. High school mathematics (pp. 119-139). New York, NY: Macmillan. Weinberg, A. (2007). New perspectives on the student-professor problem. In T. Lamberg & L. R. Wiest (Eds.), Proceedings of the 29th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 164-170). Stateline, NV: University of Nevada. Wollman, W. (1983). Determining the sources of error in a translation from sentence to equation. Journal for Research in Mathematics Education, 14, 169-181
Dirección de correo electrónico de contacto
martamg@ugr.es