The conjecturing process: perspectives in theory and implications in practice
Tipo de documento
Autores
Cañadas, María C. | Deulofeu, Jordi | Figueiras, Lourdes | Reid, David | Yevdokimov, O.
Lista de autores
Cañadas, María C., Deulofeu, Jordi, Figueiras, Lourdes, Reid, David y Yevdokimov, O.
Resumen
In this paper we analyze different types and stages of the conjecturing process. A classification of conjectures is discussed. A variety of problems that could lead to conjectures are considered from the didactical point of view. Results from a number of research studies are used to identify and investigate a number of questions related to the theoretical background of conjecturing as well as practical implications in the learning process.
Fecha
2007
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Generalización | Otro (procesos cognitivos) | Razonamiento | Tipos de problemas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Allen, L. G. (2001). Teaching mathematical induction: An alternative approach. Mathematics Teacher, 94, 500-504. Arzarello, F., Gallino, G., Micheletti, C., Olivero, F., Paola, D., & Robutti, O. (1998). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier and K. Newstead (Eds.), Proceedings of the Twenty-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 32-39). Stellenbosch, South Africa. Bergqvist, T. (2005). How students verify conjectures: Teachers’ expectations. Journal of Mathematics Teacher Education, 8, 171-191. Cañadas, M. C. (2002). Razonamiento inductivo puesto de manifiesto por alumnos de secundaria. Granada: University of Granada. Cañadas, M. C. & Castro, E. (2005). A proposal of categorisation for analysing inductive reasoning. In M. Bosch (Ed.), Proceedings of the CERME 4 International Conference (pp. 401-408). Sant Feliu de Guíxols, Spain. Published online at http://ermeweb.free.fr/CERME4/ De Guzmán, M. (1996). El rincón de la pizarra. Ensayos de visualización en análisis matemático. Pirámide, Madrid. Duval, R. (1990). Pour une approche cognitive de l’argumentation. Annales de Didactique et de Sciences Cognitives, 3, 195-221. Figueiras, L. & Deulofeu, J. (2005). Visualising and conjecturing solutions for Heron’s problem. In M. Bosch (Ed.), Proceedings of the CERME 4 International Conference (pp. 420-427). Sant Feliu de Guíxols, Spain. Published online at http://ermeweb.free.fr/CERME4/ Fischbein, E. (1987). Intuition in science and mathematics. An educational approach. Dordrecht: Reidel. Furinghetti, F. & Paola, D. (2003). To produce conjectures and to prove them within a dynamic geometry environment: A case study. In N. A. Pateman, B. J. Doherty, & J. Zilliox (Eds.), Proceedings of the Twenty-seventh Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 397-404). Honolulu, USA. Goldin, G. A. & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. Cuoco & F. R. Curcio (Eds.), The Roles of Representation in School Mathematics. National Council of Teachers of Mathematics 2001 Yearbook (pp. 1-23). Reston, VA: National Council of Teachers of Mathematics. Knipping, C. & Reid, D. (2005). Schwarze Kisten - Mit Black boxes Zusammenhänge erkunden. In B. Barzel, S. Hußmann, & T. Leuders (Eds.), Computer, Internet & Co. im Mathematikunterricht (pp. 167-180). Berlin: Cornelsen. Mason, J. (2002). Generalisation and algebra: Exploiting children’s powers. In L. Haggerty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 105-120). London: RoutledgeFalmer. Morrison, T. J. (2001). Functional analysis: An introduction to Banach space theory. New York: Wiley. Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press. Polya, G. (1954). Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press. Reid, D. A. (2001). Conjectures and refutations in Grade 5 Mathematics. Journal for Research in Mathematics Education, 33(1) 5-29. Reid, D. A. (2003). Forms and uses of abduction. In M. A. Mariotti (Ed.), Proceedings of the CERME 3 international conference (n.p.). Bellaria, Italy. Published online at http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Reid_cerme3.pdf Smith, E. P. & Henderson, K. B. (1959). Proof. In Fawcett H., Hach A., Junge C., Syer H., van Engen H., Jones P (Eds.), The growth of mathematical ideas K-12. Twenty-fourth yearbook (pp.111-181). Washington, DC: National Council of Teachers of Mathematics. Yevdokimov, O. (2003). Intuitive proofs as a tool for development of student’s creative abilities while solving and proving. Short Oral presentation. In N. A. Pateman, B. J. Doherty, & J. Zilliox (Eds.), Proceedings of the Twenty-seventh Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, p. 264). Honolulu, USA. Yevdokimov, O. (2005). About a constructivist approach for stimulating students’ thinking to produce conjectures and their proving in active learning of geometry. In M. Bosch (Ed.), Proceedings of the CERME 4 International Conference (pp. 469-480). Sant Feliu de Guíxols, Spain. Published online at http://ermeweb.free.fr/CERME4
Dirección de correo electrónico de contacto
mconsu@ugr.es