Onto-semiotic configurations underlying diagrammatic reasoning
Autores
Blanco, Teresa F. | Contreras, Ángel | Giacomone, Belén | Godino, Juan D. | Wilhelmi, Miguel R.
Lista de autores
Godino, Juan D., Giacomone, Belén, Blanco, Teresa F., Wilhelmi, Miguel R. y Contreras, Ángel
Resumen
Diagrams and in general the use of visualization and manipulative material, play an important role in mathematics teaching and learning processes. Although several authors warn that mathematics objects should be distinguished from their possible material representations, the relations between these objects are still conflictive. In this paper, some theoretical tools from the onto-semiotic approach of mathematics knowledge are applied to analyse the diversity of objects and processes involved in mathematics activity, which is carried out using diagrammatic representations. This enables us to appreciate the synergic relations between ostensive and non-ostensive objects overlapping in mathematics practices. The onto-semiotic analysis is contextualised in a visual proof of the Pythagorean theorem.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Investigación en Educación Matemática | Razonamiento | Usos o significados | Visualización
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Nombre del evento
40th Annual Meeting of the International Group for the Psychology of Mathematics Education (PME 40),
Lugar (evento)
Tipo de evento
Tipo de presentación
Referencias
Bakker, A., & Hoffmann, M. H. G. (2005). Diagrammatic reasoning as the basis for developing concepts: a semiotic analysis of students’ learning about statistical distribution. Educational Studies in Mathematics, 60, 333–358. Cellucci, C. (2008). The nature of mathematical explanation. Studies in the History and Philosophy of Science, 39, 202–210. Dörfler, W. (2005). Diagrammatic thinking. Affordances and constraints. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign-Grounding Mathematics Education (pp. 57–66). Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131. Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97–124. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. Zentralblatt für Didaktik der Mathematik (ZDM): The International Journal on Mathematics Education, 39(1), 127–135. Lasa, A., & Wilhelmi, M. R. (2013). Use of GeoGebra in explorative, illustrative and demonstrative moments. Revista do Instituto GeoGebra de São Paulo, 2(1), 52–64. Radford, L. (2008). Diagrammatic thinking: Notes on Peirce’s semiotics and epistemology. PNA, 3(1), 1-18. Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. Research, theory, practice, and issues. Dordrecht: Springer. Sherry, D. (2009). The role of diagrams in mathematical arguments. Foundation of Science, 14, 59–74. Shin, S-J., & Lemon, O. (2008). Diagrams. Stanford Encyclopedia of Philosophy. Retrieved from http://plato.stanford.edu/entries/diagrams/
Dirección de correo electrónico de contacto
belen.giacomone@gmail.com