Compacidad difusa
Tipo de documento
Autores
Lista de autores
Luna, Joaquín y Salazar, ElÍas
Resumen
Presentamos una caracterización de los espacios topológicos L-difusos compactos, donde L es un retículo completo cuasi-monoide con estructuras adicionales de GL-monoide y GL-comonoide.
Fecha
2006
Tipo de fecha
Estado publicación
Enfoque
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Luna, Joaquín | Luque, Carlos Julio | Oostra, Arnold | Pérez, Jesús Hernando | Ruiz, Carlos
Lista de editores (capitulo)
Luna, Joaquín, Luque, Carlos Julio, Oostra, Arnold, Pérez, Jesús Hernando y Ruiz, Carlos
Título del libro
Memorias XVI Encuentro de Geometría y IV encuentro de Aritmética
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
89-103
Referencias
[1] ADAMEK, J.; HERRLICH, H.; STRECKER, G., Abstract and Concrete Categories, John Wiley & Sons, New York, 1990. [2] BIRKHOFF, G., Lattice Theory, American Mathematical Society, Providence, 1940. [3] BOURBAKI, N., General Topology, Addison-Wesley Publishing, Massachusetts, 1966 [4] CHANG, C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. [5] , A new proof of the completeness of the lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80. [6] H¨OHLE, U., Monoidal closed categories, weak topoi and generalized logics, Fuzzy Sets and Systems 42 (1991), no. 1, 15–35. [7] , M-valued sets and sheaves over integral commutative cl-monoids, Applications of category theory to fuzzy subsets (Linz, 1989), Kluwer Acad. Publ., Dordrecht, 1992, pp. 33–72. [8] , Commutative, residuated l-monoids, Non-classical logics and their applications to fuzzy subsets (Linz, 1992), Kluwer Acad. Publ., Dordrecht, 1995, pp. 53– 106. [9] H¨OHLE, U., ˇSOSTAK, A., Fixed-Basis Fuzzy Topologies In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publisher, Boston, 1999. [10] JOHNSTONE, P., Stone spaces, Cambridge University Press, Cambridge, 1982. [11] JOHNSTONE, P., Stone spaces, Cambridge University Press, Cambridge, 1982. [12] RODABAUGH, S., Powerset Operator Foundations For Poslat Fuzzy Set Theories and Topologies, In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, Kluwer Academic Publisher, Boston, 1999. [13] ˇSOSTAK, A., Fuzzy functions and an extension of the category L-Top of Chang- Goguen L-topological spaces, Proceedings of the Ninth Prague Topological Symposium, Prague, Czech Republic, 2001. [14] WILLARD, S., General Topology, Addison-Wesley Publishing Company, Massachusetts, 1970.
Proyectos
Cantidad de páginas
722