Generalization in fifth graders within a functional approach
Tipo de documento
Autores
Lista de autores
Pinto, Eder y Cañadas, María C.
Resumen
This article discusses evidence of 24 fifth graders’ (10-11 year olds’) ability to generalize when solving a problem which involves a linear function. Analyzed in the context of the functional approach of early algebra, the findings show that 3 students generalized both when solving specific instances and when asked to provide the general formula; while 15 students generalized only when asked to define the general formula. The results are described in terms of the functional relationship identified, the types of representation used to express them and the type of questions in which students generalized their answers. Most of the pupils who generalized did so based on the correspondence between pairs of values in the function at issue.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Portsmouth, NH: Heinemann. Blanton, M. L., & Kaput, J. J. (2005). Helping elementary teachers build mathematical generality into curriculum and instruction. ZDM, 37(1), 34-42. Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai, & E. Knuth (Eds.), Early algebraization. A Global dialogue from multiple perspectives (pp. 5-23). Berlin, Germany: Springer. Blanton, M. L., Brizuela, B. M., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511-558. Blanton, M. L., Levi, L., Crites, T., & Dougherty, B. (Eds.) (2011). Developing essen-tial understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: National Council of Teachers of Mathematics. Cañadas, M. C. & Molina, M. (2016). Una aproximación al marco conceptual y prin-cipales antecedentes del pensamiento funcional en las primeras edades [Approach to the conceptual framework and background of functional thinking in early years]. In E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruiz, & M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209-218). Granada, Spain: Comares. Carpenter, T., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. Madison, WI: National Center for Improving student Learning and Achievement in Mathematics and Science. Carraher, D. W., & Schliemann, A. D. (2002). The transfer dilemma. The Journal of the Learning Sciences, 11(1), 1-24. Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Reston, VA: NCTM. Carraher, D. W., & Schliemann, A. D. (2016). Powerful ideas in elementary school mathematics. In L. English, & D. Kirshner (Eds.), Handbook of international re-search in mathematics education. Third edition (pp. 191-218). New York, NY: Routledge. Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22. Castro, E., Cañadas, M. C., & Molina, M. (in press). Pensamiento funcional mostrado por estudiantes de Educación Infantil. Edma 0-6. Educación Matemática en la Infancia. Dienes, Z. (1961). On abstraction and generalization. Harvard Educational Review, 31(3), 281-301. Ellis, A. B. (2007). A taxonomy for categorizing generalizations. The Journal of the Learning Sciences, 16(2), 221-262. Harel, G., & Tall, D. (1991). The general, the abstract, and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38-42. Kaput, J. J. (1999). Teaching and learning a new algebra. In E. Fennema & T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Lawrence Erlbaum Associates. Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York, NY: Lawrence Erlbaum. Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathemat-ics Educator, 8(1), 139-151. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: University of Chicago Press. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 65-86). Dordrecht, The Neth-erlands: Kluwer Academic Publishers. Mason, J., & Pimm, D. (1984). Seeing the general in the particular. Educational Stud-ies in Mathematics, 15(3), 277-289. Mason, J., Burton, L., & Stacey, K. (1988). Pensar matemáticamente [Thinking math-ematically]. Barcelona, Spain: Labor. Merino, E., Cañadas, M. C., & Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización [Representations and patterns used by fifth grade students in a generalization task]. Edma 0-6: Educación Matemática en la Infancia, 2(1), 24-40. Mitchelmore, M., & White, P. (2007). Abstraction in mathematics learning. Mathe-matics Education Research Journal, 19(2), 1-9. Pinto, E. & Cañadas, M. C. (2017). Generalization in fifth graders within a functional approach. In B. Kaur, W. Kin Ho, T. Lam Toh, & B. Heng Choy (Eds.), Proceed-ings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49-56). Singapore: PME. Radford, L. (2010). Layers of generality and types of generalization in pattern activi-ties. PNA, 4(2), 37-62. Romberg, T., Fennema, E., & Carpenter, T. (1993). Integrating research on the graphical representation of functions. New York, NY: Routledge. Schifter, D., Monk, S., Russell, S., & Bastable, V. (2008). Early algebra: What does understanding the laws of arithmetic mean in the elementary grades? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 389-412). New York, NY: Lawrence Erlbaum. Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 133-163). New York, NY: Lawrence Erl-baum. Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educa-tional Studies in Mathematics, 20(2), 147-164. Warren, E., Miller, J., & Cooper, T. J. (2013). Exploring young students’ functional thinking. PNA, 7(2), 75-84.
Financiadores
Chilean Government CONICYT folio 712160307-2015 | Spanish Ministry of Economy and Competitiveness