El proceso cognitivo-lingüístico de la justificación en estudiantes universitarios
Tipo de documento
Autores
Lista de autores
D´Andrea, Rodolfo Eliseo, Real, Mónica y Sastre, Patricia
Resumen
El objetivo de este trabajo es analizar los procesos cognitivo-lingüísticos que los estudiantes pueden llegar a utilizar para determinar y sostener el valor de verdad de una proposición. Se les propuso determinar el valor de verdad de un grupo de proposiciones, justificando el porqué de la elección realizada. Los resultados obtenidos mostraron que un importante porcentaje de estudiantes pudieron determinar el valor de verdad adecuadamente, pero no pudieron justificarlo. En los casos que lo hicieron, se observó, que la justificación realizada consistió en la exhibición de algunos casos particulares aleatorios, mientras la justificación coloquial fue usada por pocos estudiantes.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Lógica matemática | Procesos de justificación | Razonamiento
Enfoque
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Serna, Luis Arturo
Título del libro
Acta Latinoamericana de Matemática Educativa
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
468-477
ISBN (capítulo)
Referencias
Balacheff, N. (2000). Procesos de prueba en los alumnos de matemáticas. Bogotá: Una empresa docente. Universidad de Los Andes. Coll, C. (1987). Meaning and sense in school learning. Thoughts about meaningful learning. Journal for the Study of Education and Development. 11 (41), 131 – 142 Dreyfus, T. (2000). La demostración como contenido a lo largo del curriculum. En Gorgorió, N. Deulofeu, A. y Bishop, A. (Coords.). Matemáticas y Educación. Retos y cambios desde una perspectiva internacional. Barcelona. Graó, S.R.L. pp.125– 133. Hanna, G. y Jahnke, H. N. (1996). Proof and proving. En A. J. Bishop et al. (Eds.): International Handbook of Mathematics Education (pp. 877-908). Dordrecht: Kluwer, A. P Healy, L. y Hoyles, C. (2000). A study of proof Conceptions in Algebra. Journal for Research in Mathematics Education. 31(4), 396 – 428. Jorba, J., Gómez, I. y Prat, A. (1998). Hablar y escribir para aprender. U o de la lengua en situación de enseñanza-aprendizaje desde las áreas curriculares. Madrid: Síntesis. Parra, B. (1990). "Dos concepciones de resolución de problemas de matemáticas". En: Alarcón Bortolussi, J.; Rosas Domínguez, R.S. (coord.). La enseñanza de las matemáticas en la escuela secundaria. Lecturas. 1995. p. 13. SEP, México. (Primer nivel. Programa Nacional de Actualización Permanente. Originalmente apareció en la revista Educación Matemática, 2(3). 1990. Piaget, J. (1983). El Lenguaje y El Pensamiento en el niño. Estudio sobre la lógica del niño I. Buenos Aires: Guadalupe.
Proyectos
Cantidad de páginas
10