La resolución de problemas para construir conocimiento matemático curricular
Tipo de documento
Autores
Lista de autores
Pujol, Roma y Figueiras, Lourdes
Resumen
Destacamos algunas posibilidades que la resolución de problemas tiene en la enseñanza de la matemática en la etapa secundaria. A partir de un problema profundizamos en la construcción de conocimiento matemático curricular.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Desarrollo | Diseño | Estrategias de solución | Planteamiento de problemas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
25
Rango páginas (artículo)
127-139
ISSN
18150640
Referencias
Adams, K. (1993): How polite is x? The Mathematical Gazette 77(478), 79-80. Arcavi, A.; Bruckheimer, M. (1981): How shall we teach the multiplication of negative numbers?. Mathematics in School 10(5), 31-33. Borel, E.; Drach, J. (1895): Introduction a l’étude de la Théorie des Nombres et de l’Algèbre Supérieure. Librairie Nony, París. Cid, E. (2003): La investigación didáctica sobre los números negativos: estado de la cuestión. Pre-publicaciones del seminario matemático García de Galdeano, Universidad de Zaragoza. Cockcroft, W.H. (1985): Las Matemáticas sí cuentan. Informe Cockcroft. Ministerio de Educación y Ciencia. Subdirección General de Perfeccionamiento del Profesorado, Madrid. Freudenthal, H. (1973): Mathematics as an educational task. Reidel Publishing Company, Dordrecht (Holanda). García Cruz, J.A. (2002): La didáctica de las matemáticas: una visión general. RTEE, http://www.gobiernodecanarias.org/educacion/rtee/rtee.htm González et al. (1990): Números enteros. Síntesis, Madrid. Griggs, Terry S. (1991): Impolite numbers. The Mathematical Gazette 75(474), 442- 443. Halmos, P. (2006): Com cal escriure en matemàtiques. Butlletí de la Societat Catalana de Matemàtiques 21(1), 53-79. Holton, D. (2008): What VIEW of mathematics should we learn at school? Symposium on the Occasion of the 100th Anniversary of ICMI, Rome. Klein, F. (1927): Matemática elemental desde un punto de vista superior, vol. 1. Madrid: [s.n.]. Mason, J.; Burton, L.; Stacey, K. (1988): Pensar matemáticamente. Labor, Barcelona. Pla i Carrera, J. (2006): Introducció a la metodologia de la matemàtica. Publicacions i edicions de la Universitat de Barcelona, Barcelona. Pólya, G. (1966): Teaching us a lesson; MAA Video Classics. The Mathematical Association of America. Pólya, G. (1981): Mathematical discovery: on understanding, learning, and teaching problem solving. Wiley, New York. Pólya, G. (1987): Cómo plantear y resolver problemas. Trillas, México. Puig Adam, P. (1960): La Matemática y su enseñanza actual. Ministerio de Educación Nacional, Madrid. Pujol, R. (2008): Una reconsideració dels nombres enters per a l’ensenyament postobligatori, Tesis Doctoral, Universitat Autònoma de Barcelona. Pujol, R.; Bibiloni, Ll.; Deulofeu, J. (2007): Del treball conjectural al rigor: la resolució de problemes als ulls de l’alumne. Biaix 26, 66-80. Rey Pastor, J. (1976): Elementos de análisis algebraico. Biblioteca Matemática, Madrid. Rey Pastor, J.; Pi Calleja, P.; Trejo, A. (1969): Análisis matemático, vol I. Análisis algebraico, teoría de ecuaciones y cálculo infinitesimal de una variable. Kapelusz, Buenos Aires. UNESCO (2005): Educación para Todos. El imperativo de la calidad. UNESCO, Informe de Seguimiento de la EPT en el Mundo 2005, París.