Graphical representation and generalization in sequences problems
Autores
Lista de autores
Cañadas, María C., Castro, Encarnación y Castro, Enrique
Resumen
In this paper we present different ways used by Secondary students to generalize when they try to solve problems involving sequences. 359 Spanish students solved generalization problems in a written test. These problems were posed through particular terms expressed in different representations. We present examples that illustrate different ways of achieving various types of generalization and how students express generalization. We identify graphical representation of generalization as a useful tool of getting other ways of expressing generalization, and we analyze its connection with other ways of expressing it.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Lugar (evento)
Tipo de evento
Tipo de presentación
Referencias
Becker, J. R., & Rivera, F. (2005). Generalization strategies of beginning High School algebra students. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 121-128). Melbourne: PME. Boletín Oficial del Estado (2003). Real Decreto 832/2003 de 27 de junio, de Ordenación General y las Enseñanzas Comunes de la Educación Secundaria Obligatoria (vol. BOE nº 158, pp. 25683-25743). Madrid: Ministerio de Educación y Ciencia. Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analyzing inductive reasoning. PNA, 1(2), 67-78. Cañadas, M. C. (2007). Descripción y caracterización del razonamiento inductivo utilizado por estudiantes de educación secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas. Granada: Departamento de Didáctica de la Matemáticas de la Universidad de Granada. Dörfler, W. (1991). Forms and means of generalization in mathematics. In A. J. Bishop (Ed.), Mathematical knowledge: Its growth through teaching (pp. 63-85). Dordrecht: Kluwer Academic. Duval, R. (1999). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales. México DC: Universidad del Valle. Figueiras, L., & Cañadas, M. C. (2010). Reasoning on transition from manipulative strategies to general procedures in solving counting problems. Paper presented at the 7th British Congress on Mathematics Education, Manchester, UK. Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). New York: MacMillan. Janvier, C. (1987). Translation processes in Mathematics Education. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 27-32). Hillsdale, New Jersey: LEA. Kolloffel, B., T. H. S. Eysink, A. De Jong, & Wilhelm, P. (2009). The effects of representational format on learning combinatorics from an interactive computer simulation. Instructional Science, 37, 6, 503-517. Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics: 11-16 (pp. 102-119). London: Murray. Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra. Perspectives for research and teaching (pp. 87-106). London: Kluwer. Lee, L., & Wheeler, D. (1987). Algebraic thinking in high school students: Their conceptions of generalisation and justification. Montreal: Concordia University. Mason, J., & Pimm, D. (1984). Generic examples: seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277-290. Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to roots of algebra. Milton Keynes: Open University Press. Mill, J. S. (1858). System of logic, raciocinative and inductive. London: Harper & Brothers. Neubert, G. A., & Binko, J. B. (1992). Inductive reasoning in the secondary classroom. National Education Association: Washington DC. Pólya, G. (1967). Le découverte des mathématiques. París: DUNOD. Radford, L. (2002). The seen, the spoken and the written: a semiotic approach to the problem of objetification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23. Radford, L. (2003). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70. Radford, L. (2010). PNA, 4(2), 37-62. Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20(2), 147-164. van Someren, M. W., Reimann, P., Boshuizen, H. P. A., & de Jong, T. (1998). Learning with multiple representations. Oxford: Elsevier.