Deducción geométrica de la ecuación cuadrática y su aplicación didáctica en el proceso de enseñanza aprendizaje de la matemática
Tipo de documento
Autores
Lista de autores
Barreto, Julio César
Resumen
En este artículo analizaremos un poco la acepción geométrica del producto notable del cuadrado de la suma de dos cantidades en relación a la noción de área, tomando en consideración la aditividad que guardan las figuras geométricas elementales que la conforman al construir este producto notable en forma geométrica, bien sean estos paralelogramos unos cuadrados o rectángulos. Además, veremos la aplicación de esta suma del cuadrado de dos cantidades tratados desde un punto de vista geométrico aplicado en la solución de la ecuación cuadrática o mejor conocida ecuación de segundo grado, usando algunos procesos cognitivos y algunas aplicaciones algebraicas.
Fecha
2009
Tipo de fecha
Estado publicación
Términos clave
Ecuaciones e inecuaciones | Formas geométricas | Gráfica | Relaciones geométricas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Barreto, J. (2008). Deducciones de las fórmulas para calcular las áreas de figuras geométricas a través de procesos cognitivos. Versión electrónica. Revista Números (69). Obtenida en mayo de 2009 en http://www.sinewton.org/numeros/numeros/69/ideas_02.php Barreto, J. (2009). Cuadratura, primera noción de área y su aplicación en la expresión del área de diferentes figuras geométricas como recurso didáctico en la extensión geométrica del teorema de Pitágoras. Versión electrónica. UNION revista digital Iberoamericana de Educación Matemática (17). Obtenida en mayo de 2009 en http://www.fisem.org/descargas/17/Union_017_007.pdf. Duval, R. (1998). Geometry from a cognitive point of view. En C. Mannana. V. Villani (Eds), Perspective on the Teaching of the Geometry for the 21st Century (pp. 37-51). Dordrecht, Netherlands: Kluwer Academic Publishers. Heath, T. (1956). The thirteen books of Euclid’s Elements. Translated from the text of Heiberg. Volume I. Segunda edición. Dover Publications, INC. New York. Plasencia, I. (2000). Análisis del papel de las imágenes en la actividad matemática. Un estudio de casos. Tesis de doctorado sin publicar, Universidad de la Laguna, Las Palmas de Gran Canaria, España. Real Academia Española (2001). Diccionario de la lengua española. Madrid, España: Espasa Calpe. Torregrosa, G. y Quesada, H. (2007). “Coordinación de los Procesos Cognitivos en Geometría”. Relime, 10 (2), 273-300. México: Publicación del Comité Latinoamericano de Matemática Educativa. Zazkis, R.; Dubinsky, E. y Dautermann, J. (1996). Coordinating visual and analitic strategies: a student’s understanding of the group D4. Journal for Research in Mathematic Education 27 (4), 435-457.