Influencia de las creencias de los estudiantes en la resolución de problemas en Educación Matemática
Tipo de documento
Autores
Lista de autores
Fajardo, Arnulfo
Resumen
Este artículo tiene como objetivo contribuir al conocimiento de las creencias que tienen los estudiantes de educación secundaria sobre las matemáticas. El análisis se ha enfocado en dar respuesta a las siguientes preguntas: ¿Cuál es el concepto de creencia en el marco de la educación matemática?; ¿Cuáles son las creencias más comunes que tienen los estudiantes de secundaria sobre la resolución de problemas?; ¿Cómo inciden algunas creencias de los estudiantes en la resolución de problemas de matemáticas? Identificamos a partir de la literatura; algunas creencias personales e idiosincráticas que pueden incidir en la forma cómo los estudiantes reaccionan frente al aprendizaje de las matemáticas y determinan la manera como abordan la solución de un problema. Concluimos que los maestros deben generar estrategias que permitan identificar las creencias que tienen los estudiantes sobre las matemáticas, reforzar las que inciden positivamente y transformar las que sean necesarias para favorecer el análisis y la resolución de problemas.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Albarracín, L., & Gorgorió, N. (2014). Design a plan to solve fermi problems involving large numbers. Educational studies in mathematics, 86(1), 79–96. Benítez, D. (2006). Formas de razonamiento que desarrollan los estudiantes en la resolución de problemas con apoyo de la tecnología computacional. Tesis Doctoral (Unpublished doctoral dissertation). Cinvestav.México. Bingolbali, F., & Bingolbali, E. (2019). One curriculum and two textbooks: opportunity to learn in terms of mathematical problem solving. Mathematics Education Research Journal, 31(3), 237–257. Callejo, M., & Vila, A. (2003). Origen y formación de creencias sobre la resolución de problemas. estudio de un grupo de alumnos que comienzan la educación secundaria. Boletín de la Asociación matemática Venezolana, 10(2), 173–194. Callejo, M., & Vila, A. (2004). Matemáticas para aprender a pensar. El papel de las creencias en la resolución de problemas. Madrid, Nancea. Callejo, M. L., & Vila, A. (2009). Approach to mathematical problem solving and students’ belief systems: two case studies. Educational Studies in Mathematics, 72(1), 111–126. Charles, R. I., & Lester, F. K. (1982). Teaching problem solving: What, why & how. Dale Seymour Publications Palo Alto, CA. Eisenmann, P., Novotná, J., Přibyl, J., & Břehovsky, J. (2015). The development `of a culture of problem solving with secondary students through heuristic strategies. Mathematics Education Research Journal, 27(4), 535–562. English, L., & Sriraman, B. (2010). Theories of Mathematics Education. In L. English & B. Sriraman (Eds.), Theories of mathematics education (SpringerV ed., pp. 263–289). Heidelberg: Heidelberg:Springer-Verlag. doi: 10.1007/978-3-642-00742-2 Erazo-Hurtado, J. D., & Aldana-Bermúdez, E. (2015). Sistema de creencias sobre las matemáticas en los estudiantes de educación básica. Praxis, 11(1), 163–169. Fiallo Leal, J.E. & Gutiérrez Rodríguez, A. (2007). Unidad de enseñanza de las razones trigonométricas en un ambiente Cabri para el desarrollo de las habilidades de demostración. In P. F. B. G. J. M. G. P. Bolea M. Camacho (Ed.), Investigación en educación matemática. comunicaciones de los grupos de investigación (pp. 41–62). Huesca.: X Simposio de la SEIEM. Galende, N., Rojo, V., & Arrivillaga, A. R. (2019). The influence of beliefs in the process of teaching-learning mathematics. Journal of Psychological & Educational Research, 27(2), 88–110. Garofalo, J. (1989). Beliefs and their influence on mathematical performance. The Mathematics Teacher, 82(7), 502–505. Gómez Chacón, I. M. (2003). La tarea intelectual en matemáticas afecto, metaafecto y los sistemas de creencias. Boletín de la Asociación Matemática Venezolana, 10(2), 225–248. Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519–524. Hensberry, K. K., & Jacobbe, T. (2012). The effects of polya’s heuristic and diary writing on children’s problem solving. Mathematics Education Research Journal, 24(1), 59–85. Jäder, J., Sidenvall, J., & Sumpter, L. (2017). Students’ mathematical reasoning and beliefs in non-routine task solving. International Journal of Science and Mathematics Education, 15(4), 759–776. Jones, I., & Inglis, M. (2015). The problem of assessing problem solving: Can comparative judgement help? Educational Studies in Mathematics, 89(3), 337–355. Kleiner, I. (1986). Famous problems in mathematics: An outline of a course. For the learning of mathematics, 6(1), 31–38. Lee, S.-Y. (2016). Students’ use of “look back” strategies in multiple solution methods. International Journal of Science and Mathematics Education, 14(4), 701–717. Lemus, M., & Ursini, S. (2016). Creencias y actitudes hacia las matemáticas. Un estudio con alumnos de Bachillerato. In . . . T. F. A. J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández (Ed.), Investigación en educación matemática xx (pp. 315–323). Markovits, Z., & Forgasz, H. (2017). “mathematics is like a lion”: Elementary students’ beliefs about mathematics. Educational Studies in Mathematics, 96(1), 49–64. Martínez Padrón, O. (2008). Actitudes hacia la matemática. Sapiens. Revista Universitaria de Investigación, 9(1), 237–256. Martínez-Padrón, O., Contarino, A., & Ávila, J. (2015). Aspectos emocionales que impactan el desempeño de los estudiantes en el aula de matemática. Acta Latinoamericana de Matemática Educativa, 28, 182–189. Martínez Padrón, O. (2013). Las creencias en la educación matemática. Educere, 17(57), 231–239. McDonough, A., & Sullivan, P. (2014). Seeking insights into young children’s beliefs about mathematics and learning. Educational Studies in Mathematics, 87(3), 279–296. Ministerio de Educación Nacional. (2003). Estándares curriculares para matemáticas. Estándares curriculares. NCTM. (2000). Standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics. Olsson, J., & Granberg, C. (2019). Dynamic software, task solving with or without guidelines, and learning outcomes. Technology, knowledge and learning, 24(3), 419–436. Onuchic, L. d. l. R. (1999). Ensino-aprendizagem de matemática através da resolução de problemas. Pesquisa em educação matemática: concepções e perspectivas. São Paulo: UNESP, 199–218. Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of educational research, 62(3), 307–332. Papadopoulos, I. (2015). Beliefs and mathematical reasoning during problem solving across educational levels. In C. B.-S. Eichler (Ed.), Views and beliefs in mathematics education (pp. 183–195). Springer. Polya, G. (1945). How to solve it. princeton. New Jersey: Princeton University. Polya, G. (1962). Mathematical discovery, 1962. John Wiley & Sons. Pongsakdi, N., Laakkonen, E., Laine, T., Veermans, K., Hannula-Sormunen, M. M., & Lehtinen, E. (2019). The role of beliefs and motivational variables in enhancing word problem solving. Scandinavian Journal of Educational Research, 63(2), 179–197. Prendergast, M., Breen, C., Bray, A., Faulkner, F., Carroll, B., Quinn, D., & Carr, M. (2018). Investigating secondary students beliefs about mathematical problem-solving. International Journal of Mathematical Education in Science and Technology, 49(8), 1203–1218. Puig, L. (1996). Elementos de resolución de problemas. Comares. Reiss, K., & Törner, G. (2007). Problem solving in the mathematics classroom: the german perspective. ZDM, 39(5-6), 431–441. Santos-Trigo, M. (2019). Problem Solving in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 129–135). Cham, Switzerland: Cham, Switzerland: Springer. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press Inc. Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of’well-taught’mathematics courses. Educational psychologist, 23(2), 145–166. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. Handbook of research on mathematics teaching and learning, 334–370. Schrock, C. S. (2000). Problem solving–what is it?. Journal of School Improvement, 1(2), 20–24. Stylianides, A. J., & Stylianides, G. J. (2014). Impacting positively on students’ mathematical problem solving beliefs: An instructional intervention of short duration. The Journal of Mathematical Behavior, 33(1), 8–29. Sumirattana, S., Makanong, A., & Thipkong, S. (2017). Using realistic mathematics education and the dapic problem-solving process to enhance secondary school students’ mathematical literacy. Kasetsart Journal of Social Sciences, 38(3), 307–315. Tjoe, H. (2019). “looking back” to solve differently: Familiarity, fluency, and flexibility. In . M. S.-T. Liljedahl (Ed.), Mathematical problem solving, current themes, trends, and research (pp. 3–20). Springer. Trigo, L. M. S. (1997). Principios y métodos de la resolución de problemas en el aprendizaje de las matemáticas. Grupo Editorial Iberoamérica. Wang, G., Zhang, S., & Cai, J. (2019). Chinese high school students’ mathematicsrelated beliefs and their perceived mathematics achievement: A focus on teachers’ praise. EURASIA Journal of Mathematics, Science and Technology Education, 15(7), em1713. Yuanita, P., Zulnaidi, H., & Zakaria, E. (2018). The effectiveness of realistic mathematics education approach: The role of mathematical representation as mediator between mathematical belief and problem solving. PloS one, 13(9), 1–21.