Noción de aproximación del área bajo la curva utilizando la aplicación Calculadora Gráfica de GeoGebra
Tipo de documento
Lista de autores
Ballesteros, Vladimir Alfonso, Lozano, Sébastien y Rodríguez, Óscar Iván
Resumen
Este artículo presenta los resultados de un proyecto de investigación desarrollado en la Facultad de Ingeniería y Ciencias Básicas de la Fundación Universitaria Los Libertadores de Bogotá. El objetivo era describir y analizar los efectos de implementar una unidad didáctica para la enseñanza de la noción de área bajo la curva en un curso de cálculo integral, a partir de la integración de teléfonos inteligentes durante la experiencia de aprendizaje. Para tal fin, se realizó un diseño experimental de cuatro grupos de Solomon con el propósito de determinar la influencia de una intervención mediada por la aplicación móvil Calculadora Gráfica de GeoGebra y verificar los efectos de un pretest sobre la cantidad de respuestas correctas en el postest. Los resultados se analizaron mediante la aplicación de una prueba ANOVA de dos vías. Se encontró que el pretest tuvo una influencia directa en los resultados del postest y que los dos grupos que recibieron la intervención mediada por la aplicación móvil de GeoGebra obtuvieron mejor rendimiento en el postest que aquellos grupos que tuvieron una intervención con calculadora científica tradicional.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Cálculo | Métodos estadísticos | Otro (tipos estudio) | Pruebas | Reflexión sobre la enseñanza | Software
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Abramovich, S. (2013). Computers in mathematics education: An introduction. Computers in the Schools, 30(1–2), 4–11. https://doi.org/10.1080/07380569.2013.765305 Arbain, N., & Shukor, N. A. (2015). The effects of GeoGebra on students achievement. Procedia Social and Behavioral Sciences, 172, 208–214. https://doi.org/10.1016/j.sbspro.2015.01.356 Braver, M. W., & Braver, S. L. (1988). Statistical treatment of the Solomon four-group design: A meta-analytic approach. Psychological Bulletin, 104(1), 150. https://doi.org/10.1037/0033-2909.104.1.150 Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research–A systematic review of recent trends. Computers & Education, 114, 255–273. https://doi.org/10.1016/j.compedu.2017.07.004 Caglayan, G. (2016). Teaching ideas and activities for classroom: integrating technology into the pedagogy of integral calculus and the approximation of definite integrals. International Journal of Mathematical Education in Science and Technology, 47(8), 1261–1279. https://doi.org/10.1080/0020739X.2016.1176261 Dagdilelis, V. (2018). Preparing teachers for the use of digital technologies in their teaching practice. Research in Social Sciences and Technology, 3(1), 109–121. Retrieved from https://www.learntechlib.org/p/187543/ Diković, L. (2009). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191–203. https://doi.org/10.2298/CSIS0902191D Fahlberg-Stojanovska, L., & Stojanovski, V. (2009). GeoGebra—freedom to explore and learn. Teaching Mathematics and Its Applications: An International Journal of the IMA, 28(2), 69–76. https://doi.org/10.1093/teamat/hrp003 Georgiev, T., Georgieva, E., & Smrikarov, A. (2004). M-learning-a New Stage of Е-Learning. International Conference on Computer Systems and Technologies-CompSysTech, 4(28), 1–4. https://doi.org/10.1145/1050330.1050437 Hohenwarter, J., Hohenwarter, M., & Lavicza, Z. (2009). Introducing dynamic mathematics software to secondary school teachers: The case of GeoGebra. Journal of Computers in Mathematics and Science Teaching, 28(2), 135–146. Retrieved from https://www.learntechlib.org/primary/p/30304/. Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference. Retrieved from https://www.researchgate.net/publication/228398347 Hwang, G., & Tsai, C. (2011). Research trends in mobile and ubiquitous learning: A review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 42(4), E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x Inayat, M. F., & Hamid, S. N. (2016). Integrating New Technologies And Tools In Teaching And Learning Of Mathematics: An Overview. Journal of Computer and Mathematical Sciences, 7(3), 122–129. Retrieved from http://compmath-journal.org/dnload/Momin-Fasiyoddin-Inayat-and-Shaikh-Naeem-Hamid-/CMJV07I03P0122.pdf Kozma, R. B. (2003). Technology and classroom practices: An international study. Journal of Research on Technology in Education, 36(1), 1–14. https://doi.org/10.1080/15391523.2003.10782399 Little, C. (2009). Differentiation in three easy, GeoGebra-style, lessons. MSOR Connections, 9(2), 27–30. Retrieved from https://www.heacademy.ac.uk/system/files/msor.9.2h.pdf Maclaren, P. (2014). The new chalkboard: the role of digital pen technologies in tertiary mathematics teaching. Teaching Mathematics and Its Applications: International Journal of the IMA, 33(1), 16–26. https://doi.org/10.1093/teamat/hru001 Mehanovic, S., & Spikol, D. (2012). Investigating how to design interactive learning environments to support students’ learning of upper secondary and university math. Proceedings of the 20th International Conference on Computers in Education ICCE2012; Retrieved from http://muep.mau.se/handle/2043/15777 Ozdamli, F., & Uzunboylu, H. (2015). M‐learning adequacy and perceptions of students and teachers in secondary schools. British Journal of Educational Technology, 46(1), 159–172. https://doi.org/10.1111/bjet.12136 Peng, H., Su, Y., Chou, C., & Tsai, C. (2009). Ubiquitous knowledge construction: Mobile learning re‐defined and a conceptual framework. Innovations in Education and Teaching International, 46(2), 171–183. https://doi.org/10.1080/14703290902843828 Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, 63, 490–501. https://doi.org/10.1016/j.chb.2016.05.057 Preiner, J. (2008). Introducing dynamic mathematics software to mathematics teachers: the case of GeoGebra [Doctoral dissertation in Mathematics Education]. Austria: Faculty of Natural Sciences, University of Salzburg. Retrieved from http://www.pucrs.br/ciencias/viali/tic_literatura/teses/Preiner_Judith.pdf Şad, S. N., & Göktaş, Ö. (2014). Preservice teachers’ perceptions about using mobile phones and laptops in education as mobile learning tools. British Journal of Educational Technology, 45(4), 606–618. https://doi.org/10.1111/bjet.12064 Sawilowsky, S., Kelley, D. L., Blair, R. C., & Markman, B. S. (1994). Meta-analysis and the Solomon four-group design. The Journal of Experimental Education, 62(4), 361–376. https://doi.org/10.1080/00220973.1994.9944140 Schumann, H., & Green, D. (2000). New protocols for solving geometric calculation problems incorporating dynamic geometry and computer algebra software. International Journal of Mathematical Education in Science and Technology, 31(3), 319–339. https://doi.org/10.1080/002073900287110 Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development level and usage influence student achievement in reading, mathematics, and science. Computers & Education, 85, 49–58. https://doi.org/10.1016/j.compedu.2015.02.004 Solomon, R. L. (1949). An extension of control group design. Psychological Bulletin, 46(2), 137. https://doi.org/10.1037/h0062958 Swain, C., & Pearson, T. (2002). Educators and technology standards: Influencing the digital divide. Journal of Research on Technology in Education, 34(3), 326–335. https://doi.org/10.1080/15391523.2002.10782353 Taleb, Z., Ahmadi, A., & Musavi, M. (2015). The effect of m-learning on mathematics learning. Procedia-Social and Behavioral Sciences, 171, 83–89. https://doi.org/10.1016/j.sbspro.2015.01.092 Tondeur, J., Forkosh-Baruch, A., Prestridge, S., Albion, P., & Edirisinghe, S. (2016). Responding to challenges in teacher professional development for ICT integration in education. Educational Technology and Society, 19(3), 110–120. Retrieved from www.jstor.org/stable/jeductechsoci.19.3.110. Westera, W. (2004). On strategies of educational innovation: Between substitution and transformation. Higher Education, 47(4), 501–517. https://doi.org/10.1023/B:HIGH.0000020875.72943.a7 Whitman, D. S., Van Rooy, D. L., Viswesvaran, C., & Alonso, A. (2008). The susceptibility of a mixed model measure of emotional intelligence to faking: a Solomon four-group design. Psychology Science, 50(1), 44. Retrieved from https://www.psychologie-aktuell.com/fileadmin/download/PschologyScience/1-2008/05_Whitman.pdf Zakaria, E., & Daud, M. Y. (2013). The role of technology: Moodle as a teaching tool in a graduate mathematics education course. Asian Journal of Management Science & Education, 2(4), 46–52. Retrieved from http://www.ajmse.leena-luna.co.jp/AJMSEPDFs/Vol.2(4)/AJMSE2013(2.4-04).pdf Zakaria, E., & Lee, L. S. (2012). Teacher’s perceptions toward the use of GeoGebra in the teaching and learning of Mathematics. Journal of Mathematics and Statistics, 8(2), 253–257. https://doi.org/10.3844/jmssp.2012.253.257