El concepto de pendiente: estado de la investigación y prospectivas
Tipo de documento
Lista de autores
Abreu, Ricardo, Dolores, Crisólogo, Sánchez, José Luis y Sigarreta, José
Resumen
En las últimas dos décadas han proliferado las investigaciones sobre el concepto de pendiente que, si bien en su mayoría atendían al estudio teórico de las conceptualizaciones, a través de ellas abordaban también la estructuración del contenido y los obstáculos asociados al proceso de enseñanza-aprendizaje de dicho concepto. En este trabajo se analizan y sintetizan las principales investigaciones que tratan la pendiente, así como se da noticia de alguno de sus resultados. Finalmente, se plantean posibles prospectivas para las investigaciones sobre el concepto de pendiente.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Conceptual-teórico | Ecuaciones e inecuaciones | Funciones | Otro (tipos estudio) | Usos o significados
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
103
Rango páginas (artículo)
81-98
ISSN
18871984
Referencias
Asiala, M., Cottrill, J., Dubinsky, E. y Schwingendorf, K. (1997). The development of students' graphical understanding of the derivative. The Journal of Mathematical Behavior, 16(4), 399–431. Ball, D., Thames, M. y Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59 (5), 389-407. Borello, M. (2007). Relación entre las concepciones del maestro y el aprendizaje de los alumnos en el caso de las desigualdades. Un estado del arte. Tesis de maestría no publicada, Cicata, IPN, México, D.F., México. Boyer, C. (1989). A History of Mathematics. John Wiley & Sons, inc., New York. Brown, G., Hui, S., Yu, W. y Kennedy, K. (2012). Teachers’ conceptions of assessment in Chinese contexts: A tripartite model of accountability, improvement, and irrelevance. International Journal of Educational Research, 50 (5-6), 307-320. Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33, 352-378. Carlson, M. P., Oehrtman, M. C., & Engelke, N. (2010). The Precalculus Concept Assessment (PCA) instrument: A tool for assessing students' reasoning patterns and understandings. Cognition and Instruction, 28, 113-145. Carpenter, T.P. (1986) Conceptual knowledge as a foundation for procedural knowledge: Implications from research on the initial learning of arithmetic, in J. Hiebert (ed.), Conceptual and Procedural knowledge: The Case of Mathematics, 13-132, Erlbaum, Hillsdale, NJ. Confrey, J. & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. http://doi.org/10.2307/749228 Dolores, C. (2007). Elementos para una aproximación variacional a la derivada. México: Universidad Autónoma de Guerrero y Ediciones Díaz de Santos. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (ed.) Advanced mathematical thinking, 95-126, Kluwer Academic Publishers: Dordrecht. Dubinsky, E. D., & McDonald, M. (2001). APOS: A constructivist Theory of Learning in Undergraduate Mathematics Education Research. In D. Holton (ed.), The Teaching and Learning of Mathematics at University Level, 275-282, Kluwer Academic Publishers: NY. Gómez, E., Fernando, D., Aponte, G. y Betancourt, L. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. Dyna [en linea] 81. Disponible en: ISSN 0012-7353 Hiebert, J. y Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics, 65-97. Macmillan Publishing Co, Inc: New York. Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (ed.), Conceptual and procedural knowledge: The case of mathematics, 1-28. Lawrence Erlbaum: Hillsdale, NJ. Leinhardt, G., Zaslavky, O. y Stein, M. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1-64. Leong, W. (2014). Knowing the intentions, meaning and context of classroom assessment: A case study of Singaporean teacher’s conception and practice. Studies in Educational Evaluation, 43, 70 –78. Martínez, F. (2009). La recta tangente: notas históricas y actividades para el aula. En Suma+, 61, 7– Martínez, M. y Gorgorió, N. (2004). Concepciones sobre la enseñanza de la resta: un estudio en el ámbito de la formación permanente del profesorado. Revista Electrónica de Investigación Educativa, 6(1), 1–15. McDiarmid, G. W., Ball, D. L., & Anderson, C. W. (1989). Why staying one chapter ahead doesn't really work: Subject-specific pedagogy. In M. C. Reynolds (ed.), Knowledge base for the beginning teacher, 193-205, Pergamon: Oxford, UK. Moreano, G., Asmad, U., Cruz, G. y Cuglievan, G. (2008). Concepciones sobre la enseñanza de matemática en docentes de primaria de escuelas estatales. Revista de Psicología, 26(2), 299- 334. Moreno, M. y Azcárate, C. (2003). Concepciones y creencias de los profesores universitarios de matemáticas acerca de la enseñanza de las ecuaciones diferenciales. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 21(2), 265-280. Noble, T., Nemirovsky, R., Wright, T. y Tierney, C. (2000). Experiencing Change: The Mathematics of Change in Multiple Environments. Journal for Research in Mathematics Education, 32(1), 85–108. Oktaç, A. y Çetin, İ. (2016). APOS teorisi ve matematiksel kavramların öğrenimi. E. Bingölbali, S. Arslan, & İ. Ö. Zembat (eds.) Matematik eğitiminde teoriler, 163- 182, Pegem: Akademi. Ankara. Pajares, M.F. (1992). Teachers’ beliefs and educational research: cleaning up a messy construct. Review of Educational Research, 62(3), 307-332. Preece, J. (1983). Graphs are not straightforward. En T. R. G–Green y S. J. Payne (eds.) The Psycology of Computer Use: A European Perspective, 41–56. Academic Press: London. Remesal, A. (2006). Los problemas en la evaluación del aprendizaje matemático en la educación obligatoria: perspectiva de profesores y alumnos, tesis doctoral, Barcelona: Universidad de Barcelona (www.tesisenxarxa.net/TDX–1023106–140538/index.html). Rittle-Johnson B, Schneider M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. Cohen and A. Dowker (eds) Oxford handbook of numerical cognition, 1118– 1134, Oxford University Press: Oxford. Rittle-Johnson, B. and Koedinger, K. R. (2009). Iterating between lessons concepts and procedures can improve mathematics knowledge. British Journal of Educational Psychology, 79, 483–500. Rittle-Johnson, B., Siegler R.S., Alibali, M.W. (2001). Developing conceptual understanding and procedural skill in mathematics: an iterative process. Journal Educational Psychology, 93(2), 346– 362. Royer, J. M., Mestre, J. P., & Dufresne, R. J. (2005). Introduction: Framing the transfer problem. In J. Mestre (ed.) Transfer of learning from a modern multidisciplinary perspective, vii–xxvi. Greenwich, CT: Information Age. Shulman, L. (1981). Disciplinas de investigación en educación: una visión general. Investigador educativo, 10 (6), 5–23. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. Sofronas, K., Vinsonhaler, C., Gorgievski, N., Schroeder, L. y Hamelin, C. (2011). What does it mean for a student to understand the firs-year calculus? Perspectives of 24 experts. Journal of Mathematical Behavior, 30(2), 131-148. Tall, D. O. (1999). Reflections on APOS theory in elementary and advanced mathematical thinking. O. Zaslavsky (ed.), Proceedings of the 23rd conference of the international group for the psychology of mathematics education, Vol. 1, 111-118. Haifa, Israel. Tall, D. O., y Vinner, S. (1981). Concept images and concept definitions in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169. Thompson, A. (1992). Teachers’ beliefs and conceptions: a synthesis of the research, en Grouws, D. (ed.), Handbook of research on mathematics teaching and learning, 127-146. Macmillan: Nueva York. Thompson, P. W. (1994b). The development of the concept of speed and its relationship to the concepts of rate. In G. Harel & J. Confrey (eds.) The development of multiplicative reasoning in the learning of mathematics, 179-234. SUNY Press: Albany, NY. Thompson, P. W. (2013). In the absence of meaning. In Leatham, K. (ed.) Vital directions for research in mathematics education, 57-93. Springer: New York. Thompson, P. W., & Thompson, A. G. (1994). Talking about rates conceptually, Part I: A teacher's struggle. Journal for Research in Mathematics Education, 25, 279-303. Turner, E., Wilhelm, J. y Confrey, J. (2000). Exploring Rate of Change through Technology with Elementary Students. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA, April 24-28). Vinner, S. (1994). The role of definitions in the teaching and learning of mathematics. In D. Tall (ed.) Advanced Mathematical Thinking, 65–81. Kluwer Academic Publishers: Dordrecht, Holland. Zaslavsky, O. (1987). An empirical classification model for errors in high school mathematics. Journal for research in Mathematics Education, 18(1), 3–14.