Approaching theoretical thinking within a dynamic geometry environment
Tipo de documento
Autores
Lista de autores
Olivero, Federica, Paola, Domingo y Robutti, Ornella
Resumen
In this paper we describe one classroom activity, part of a long-term project aimed at investigating the potentialities of dynamic geometry software, namely Cabri-Géomètre, in supporting students’ production of conjectures and proofs in geometry at secondary school level. The paper focuses on the activity of a pair of students solving an open geometry problem in Cabri. The analysis shows that Cabri might be a support in bridging the gap between exploration (and conjecturing) and proof: first, exploration provides students with a wide range of local logical relationships between elements or properties of the figure; then, these local concatenations are to be globally rearranged in the proving phase, in order to construct a complete proof.
Fecha
2003
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Otro (procesos cognitivos) | Relaciones geométricas | Software | Transformaciones geométricas
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
ARZARELLO, F.; MICHELETTI, C.; OLIVERO; F., PAOLA, D. and ROBUTITI, O. (1998). A model for analysing the transition to formal proof in geometry, Proceedings of PME XXII, Stellenbosh, South Africa, v. 2, pp. 24-31. ARZARELLO, F.; GALLINO, G.; MICHELETTI, C.; OLIVERO, F; PAOLA, D. and ROBUTTI, O.(1998). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry, Proceedings of PME XXII, Stellenbosh, South Africa, v. 2, pp. 32-39. ARZARELLO, F.; OLIVERO, F.; PAOLA, D. and ROBUTTI, 0.(1999). Dalle congetture alle dimostrazioni. Una possibile continuità cognitiva., L’insegnamento della matematica e delle scienze integrate, v. 22B, n. 3. BALACHEFF, N. and SUTHERLAND, R. (1994). “Epistemological domain of validity of microworlds The case of Logo and Cabri-Géométre”. In: LEWIS, R. and MENDELSOHN, P (eds.). Lessons from Learning. IFIP Transactions, A 46, pp. 137-150. Amsterdam, North Holland and Elsevier Science B.V. BALACHEFF, N. (1998). Apprendre la preuve (draft copy). BARTOLINI BUSSI, M.; BOERO, P; FERRI, F; GARUTI, R. and MARIOTTI, M.A. (1997). Approaching geometry theorems in contexts: from history and epistemology to cognition. Proceedings of PMEXXI, Lathi, v.1, pp. 180-195. BAULAC, Y.; BELLEMAIN, F. and LABORDE, J. M.(1988). Cabri-Géométre, un logiciel d'aide a l'apprentissage de la géométrie. Logiciel et manuel d'utilisation. Paris, Cedic-Nathan. BOERO, P; GARUTI, R. and MARIOTTI, M. A.(1996). Some dynamic mental process underlying producing and proving conjectures. Proceedings of PME XX, Valencia, v. 2, pp. 121-128. BOTTINO, R. M. and CHIAPPINI, G.(1995). ARI-LAB: models, issues and strategies in the design of a multiple-tools problem solving environment. Kluwer Academic Publishers. Instructional Science, v. 23, n. 1-3, pp. 7-23. CHAZAN, D. (1993). High school geometry student’s justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, v. 24, pp. 359-387. FURINGHETTI, F. and PAOLA, D. (1998). Context influence on mathematical reasoning. Stellenbosh. Proceedings of PMEXXII, v. 2, pp. 313 - 320. LABORDE, C. (1998). “Relationship between the spatial and theoretical in geometry: the role of computer dynamic representations in problem solving”. In: TINSLEY, D. and JOHNSON, D. (eds.). Information and Communications Technologies in School Mathematics. London, Chapman & Hall. LABORDE, J. M. and STRASSER, R. (1990). Cabri-Géométre: A microworld of geometry for guided discovery learning, Zentralblatt für Didaktik der Mathematik, v.90, n. 5, pp. 171-177. MARIOTTI, M. A. (1996). Costruzioni in geometria: alcune riflessioni. L’insegnamento della matematica e delle scienze integrate, v. 19B, n. 3, pp. 261 - 287. NOSS, R.: 1995, Thematic Chapter: Computers as Commodities. In: DI SESSA, A. A.; HOYLES, C. and NOSS, R. (eds.). Computers and exploratory learning. Berlin, Springer Verlag (Nato Asi Series F, v. 146). OLIVERO, F. (1999). Cabri-Géomètre as a mediator in the process of transition to proofs in open geometric situations. 4» INTERNATIONAL CONFERENCE FOR TECHNOLOGY IN MATHEMATICS TEACHING, Plymouth (in print). OTTE, M. (1999). Proof and Perception ILL, International Newsletter on the Teaching and Learning of proof, hetp://www.cabri.net/Preuve/. PERKINS, D. N. (1985). The fingertip effect: How information-processing technology changes thinking. Educational Researcher, v. 14, n. 7, pp. 11-17. PIMM, D.(1995). Symbols and meanings in school mathematics. New York, Routledge. POLYA, G. (1954). Mathematics and Plausible Reasoning. Princeton, NJ, Princeton, University Press.