Children creating ways to represent changing situations: on the development of homogeneous spaces
Tipo de documento
Autores
Lista de autores
Nemirovsky, Ricardo y Tierney, Cornelia
Resumen
This paper focuses on children creating representations on paper for situations that change over time.We articulate the distinction between homogeneous and heterogeneous spaces and reflect on children’s tendency to create hybrids between them. Through classroom and interview examples we discuss two families of tasks that seem to facilitate children’s development of homogeneous spaces: 1) making selected features directly visible, instead of requiring intermediate steps and calculations; for example, to be able to directly compare different sets of data combined in a single graph, and 2) exploring well-defined figural components that can be used in graphing, such as line segments or sequencing from left to right, that are introduced as a resource.
Fecha
2004
Tipo de fecha
Estado publicación
Términos clave
Contextos o situaciones | Gestión de aula | Magnitudes | Materiales manipulativos | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
BAKHTIN, M. M. (1981). The Dialogic Imagination: Four Essays. Austin,TX, University of Texas Press. BAMBERGER, J. (1988) “Les structurations cognitives de l’appréhension et de la notation de rythmes simples”. In: SINCLAIR, H. (ed.). La Production de Notations chez le Jeune Infant. Paris, PressesUniversitaires de France. BEDNARZ, N.; DUFOUR-JANVIER, B.; POIERIER, L. and BACON,L. (1993). Socioconstructivist viewpoint in the use of symbolism in mathematics education. Alberta Journal of Educational Research, v.1, n.39, pp. 41-58. CARROL, L. (1998). Alice in Wonderland. Oxford, UK, Oxford UniversityPress. CASEY, E. (1997). The Fate of Place. A Philosophical History. Berkeley, CA,University of California Press. CASEY, E. S.(1987). Remembering. A Phenomenological Study. Bloomington and Indianapolis, IN, Indiana University Press. DiSESSA, A. (1999). Students’ Criteria for Representational Adequacy. Berkeley, CA, Graduate School of Education University of California. DiSESSA, A.; HAMMER, D.; SHERIN, B. and KOLPAKOWSKI, T.(1991). Inventing graphing: Meta-representational expertise in children. The Journal of Mathematical Behavior v. 10, n. 2,pp. 117-160. FERREIRO, E. and TEBEROSKY, A. (1979). Literacy before Schooling.Exeter, NH, Heinemann. GASSENDI, P. (1658/1972). The Selected Works of Pierre Gassendi. New York, NY, Johnson Reprint Corporation. KAPUT, J.(1998). Representations, inscriptions, descriptions of learning: A kaleidoscope of windows. Journal of Mathematical Behavior, v.17,n. 2, pp. 265-281. KARMILOFF-SMITH, A.(1979). Micro and macro-developmental changes in language acquisition and other representational systems.Cognitive Science, n.3, pp. 91-117. KRABBERDAM, H. (1982). The Nonquantitative Way of Describing Relations and the Role of Graphs. Paper presented at the Conference on Functions, Enschede, the Netherlands. LEHRER, R.; SCHAUBLE, L.; CARPENTER, S. and PENNER, D.(2000). “The interrelated development of inscriptions and conceptual understanding”. In: COBB, P.; YACKEL, E. and McCLAIN, K. (eds.). Symbolizing and Communicating in Mathematics Classrooms. Perspectives on Discourse, Tools, and Instructional Design. Mahwah, NJ, Lawrence Erlbaum Associates. LEHRER, R; STROM, D. and CONFREY, J. ( ). Submitted, Grounding metaphors and inscriptional resonance: Children’s emerging understanding of mathematical similarity. LEVINE, J. (1983). Materialism and qualia: The explanatory gap. PacificPhilosophical Quarterly, n.64, pp. 354-361. LEWONTIN, R.(2000). The Triple Helix. Cambridge, MA, Harvard University Press. LINCOLN, Y. S. and GUBA, E. G.(1985). Naturalistic Inquiry. BeverlyHill, CA, Sage Publications. MESQUITA, A. L.(1998). On conceptual obstacles linked with external representations in geometry. Journal of Mathematical Behavior, v.17, n. 2, pp. 183-195. MONK, S. (2000). “Representation in school mathematics: Learning tograph and graphing to learn”. In: KILPATRICK, J.; MARTIN, W. G. and SCHIFTER, D. E. (eds.). A Research Companion to Principles and Standards for School Mathematics. Washington, DC,National Council of Teachers of Mathematics. NAGEL, T. (1970). What is it like to be a bat? Philosophical Review, n.79, pp. 394-403. NEMIROVSKY, R. (1996). “Mathematical narratives”. In: BEDNARZ, N.; KIERAN, C. and LEE, L. (eds.). Approaches to Algebra: Perspectives for Research and Teaching. Dordrecht, The Netherlands, Kluwer Academic Publishers. NEMIROVSKY, R. and MONK, S.(2000). “ ‘If you look at it the other way...’ An exploration into the nature of symbolizing”. In: COBB, P.; YACKEL, E. and McCLAIN, K. (eds.). Symbolizing and Communicating in Mathematics Classrooms: Perspectives on Discourse, Tools, and Instructional Design. Hillsdale, NJ, Lawrence Erlbaum. NEMIROVSKY, R.; TIERNEY, C. and WRIGHT, T. (1998). Bodymotion and graphing. Cognition and Instruction, v.16, n. 2, pp.119-172. NOBLE, T.; NEMIROVSKY, R.; WRIGHT, T. and TIERNEY, C. (2001). Experiencing change: The mathematics of change in multiple environments. Journal for Research in Mathematics Education, v. 32, n. 1, pp 85-108. OCHS, E.; GONZALES, P. and JACOBY, S. (1996). “When I come down I’m in the domain state: Grammar and graphic representation in the interpretive activity of physicists”. In: OCHS, E.; SCHEGLOFF, E. A. and THOMPSON, S. (eds.). Interaction and Grammar, Cambridge, Cambridge University Press. OCHS, E.; JACOBY, S. and GONZALES, P. (1994). Interpretive journeys: How physicists talk and travel through graphic space. Configurations, v.2, n. 1. O’KEEFE, J. and NADEL, L. (1978). The Hippocampus as a Cognitive Map. Oxford, UK, Clarendon Press. PAILLARD, J. (1991). Brain and Space. Oxford, UK, Oxford University Press. POINCARE, H. (1905/1952). Science and Hypothesis. New York, NY, Dover Publications. SHERIN, B.(1997). How Students Invent Representations of Motion: A Genetic Account. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago, IL. TIERNEY, C.; NEMIROVSKY, R. and WEINBERG, A. (1994). Changes: Up and Down the Number Line. Curricular unit for grade 3. Menlo Park, California, Dale Seymour Publications. TIERNEY, C.; WEINBERG, A. and NEMIROVSKY, R. (1994). Graphs: Changes Over Time, Curricular unit for grade 4. Menlo Park, California, Dale Seymour Publications. WHITEHEAD, A. N. (1926/1997). Science and the Modern World. New York, NY, The Free Press. WITTGENSTEIN, L. (1953). Philosophical Investigations. New York, NY, Macmillan.