Perfis de estilos de aprendizagem matemática de estudantes universitários
Tipo de documento
Autores
Lista de autores
Frota, Maria Clara Rezende
Resumen
O trabalho apresenta resultados de uma pesquisa que objetivou caracterizar os estilos de aprendizagem matemática de estudantes universitários da área de ciências sociais aplicadas. Análises fatoriais exploratórias permitiram aperfeiçoar escalas de estilos de aprendizagem matemática e classificar os 591 estudantes pesquisados, segundo um perfil de estilos de aprendizagem matemática. Esse perfil é constituído de um estilo geral e três estilos “com orientação prática”, “com orientação teórica” e “com orientação investigativa”. Os resultados reforçam a importância da adoção de práticas educacionais diversificadas nas aulas de matemática no ensino superior, que incentivem o desenvolvimento de perfis de estilos de aprendizagem matemática entre estudantes universitários.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Desde disciplinas académicas | Encuestas | Gestión de aula | Métodos estadísticos | Reflexión sobre la enseñanza
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
ADEY, P. (1997). It all depends on the context, doesn’t it? Searching for general, educable dragons. Studies in Science Education, v. 29, pp. 45-92. BORBA, M. C.; VILLARREAL, M. E. (2006). Visualization, Mathematics Education and Computer Environments. In: _____. Humans-with-Media and the Reorganization of Mathematical Thinking: Information and Communication Technologies, Modeling, Experimentation and Visualization. New York: Springer, 2006, pp.79-99. CRAWFORD, K.; GORDON, S.; NICHOLAS, J.; PROSSER, M. (1994). Conceptions of Mathematics and How it is Learned: The Perspectives of Students Entering University. Learning and Instruction, v. 4, n. 5, pp.331-345. CRAWFORD, K.; GORDON, S.; NICHOLAS. J.; PROSSER, M. (1998). Qualitatively different experiences of learning mathematics at university. Learning and Instruction, v. 8, n. 5, pp.455-468. COHEN, J. (1988). Statistical power analysisfor the behavioral sciences. Hillsdale, NJ: Erlbaum. DUFF, A. (2004). The Revised Appraches to Studying Inventory (RASI) and ists use in management education. Active Learning in Higher education, v.5, n.1, pp.56-72. ENTWISTLE, N. (1994). Approaches to reading and studying. (1994). In:_______. Styles of Learning and Teaching. London: David Fulton, pp. 65-107. ENTWISTLE, N. (2001). Styles of Learning and Approaches to Studying in Higher Education. Kybernetes, v. 30, n. 5/6, pp. 593-602. ENTWISTLE, N.; MCCUNE, V. (2004). The Conceptual Base of Study Inventories. Educational Psychology Review, v.16, n. 4, pp. 325-345. FABRIGAR, L. at al. (1999). Evaluating the use of Exploratory Factor Analysis in Psychological Research, Psychological Methods, v.4,n.3, pp. 272-299. FROTA, M. C. R. O pensar matemático no ensino superior: concepções e estratégias de aprendizagem dos alunos. 2002. 287p.Tese (Doutorado em Educação) – UFMG, Belo Horizonte. FROTA, M. C. R. Estilos de Aprendizagem Matemática de Estudantes da Área de Ciências Sociais Aplicadas. In: SEMINÁRIO INTERNACIONAL DE PESQUISA EM EDUCAÇÃO MATEMÁTICA, 3, 2006, Águas de Lindóia. Anais... Águas de Lindóia: SBEM, 2006. HAIR, J.F., Jr.; ANDERSON, R. E.; TATHAM, R. L.; BLACK, W. C. (1998). Multivariate data analysis with readings, 5 ed., Englewood Cliffs, NJ: Prentice-Hall. HORN, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, v. 30, n.2, pp.179-185. HOLZINGER, K. J.; SWINEFORD, E (1937). The bi-factor method. Psychometrika, v.2, n.1, pp. 41-54. KOZHEVNIKOV, M. (2007). Cognitive styles in the context of modern psychology: Toward an integrated framework of cognitive style. Psychological Bulletin, v.133, n. 3, pp. 464–481. MARTON, F., BOOTH S. (1997). Learning and awareness. Mahwah: Lawrence Erlbaum Associates, 224p. MARTON, F.; SÄLJÖ, R. (1976a). On qualitative differences in learning: I – outcome and process. British Journal of Educational Psychology, v.46, pp.4-11. MARTON, F.; SÄLJÖ, R. (1976b). On qualitative differences in learning: II – outcome as a function of the learners conception of the task. British Journal of Educational Psychology, v.46, pp.115-127. MESSICK, S. (1995). Cognitive styles and learning. In: ANDERSON, L. M.(Ed). International encyclopedia of teaching and teacher education. 2. ed. Oxford: Elsevier Science,. pp.387-390. NISBET, J.; SCHUCKSMITH, J. (1991). Learning strategies. New York: Routledge. PRESMEG, Norma, Research on Visualization in Learning and Teaching Mathematics. In: Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future, BOERO, Paolo; GUTIÉRREZ; Angel (Eds.), The Netherlands: Sense Publishers, 2006, p. 205-235. PINTO, M.F. Student’s understanding of real analysis. 1998. Tese (Doutorado em Educação Matemática) – Mathematics Education Research Centre, Universiy of Warwick, England. PITTA-PANTAZI D.; CHRISTOU C. (2009). Cognitive styles, dynamic geometry and measurement performance. Educational Studies in Mathematics, n. 70, v.5, pp. 5–26. STERNBERG, R, J. Thinking Styles. (1997). Cambridge, UK; New York, NY; Melbourne, AU: Cambridge UP, 1997, 180 p. TALL, D. (Ed). (1991). Advanced mathematical thinking. Netherlands: Kluwer, 289p. TENKO, R.; MARCOULIDES, G. A. (2008). Introduction to applied multivariate analysis. New York, NY: Routledge. VELICER,W. F., EATON, C. A.; FAVA, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In: GOFFIN R. D.; HELMES E. (Eds.), Problems and solutions in human assessment: Honoring Douglas N. Jackson at seventy. Norwell, MA: Kluwer Academic. WEINSTEIN, C. E.; MAYER, R. E. (1995). Learning strategies: teaching and assessing. In: ANDERSON, L.W. (Ed). International encyclopedia of teaching and teachers education. 2. ed. Oxford: Elsevier Science, pp. 471-476. WHERRY, R. J. (1959). Hierarchical factor solutions without rotation. Psychometrika, v. 24, n.1, pp. 45-51. WOLFF, H.G.; PREISING, K. (2005). Exploring item and higher order factor structure with the Schmid–Leiman solution: Syntax codes for SPSS and SAS. Behavior Research Methods, v. 37, n. 1, pp. 48-58. YUNG, Y.; THISSEN, D.; McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, v.64, n.2 pp.113-128. ZHANG, L.; STERNBERG R. J. (2005). A Threefold Model of Intellectual Styles. Educational Psychology Review, v. 17, n.1, pp.1-52, 2005. ZWICK,W. R.; VELICER,W. F. (1986). Factors influencing five rules for determining the number of components to retain. Psychological Bulletin, 99,pp. 432-442. Abdi, Hervé (2007). RV coefficient and congruence coefficient. In: SALKIND N.J. (Ed.). Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 849-853.