History of mathematics and history of science: some remarks concerning contextual framework
Tipo de documento
Autores
Lista de autores
Saito, Fumikazu
Resumen
This essay is devoted to the contextual methodology in history of mathematics. The author discusses the contextual approach given by new trends in historiography in history of science and suggests that this could help to renew the contextual framework in history of mathematics. Here we base our study on primary-sources research and survey. Special attention is given to a set of documents concerning mathematical instruments which could convey a new appreciation of mathematical practices in the sixteenth and seventeenth centuries.
Fecha
2012
Tipo de fecha
Estado publicación
Términos clave
Evolución histórica de conceptos | Historia de la Educación Matemática | Otro (fundamentos) | Teórica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
ALEXANDER, A. R. (2006). Introduction. In Isis. v. 97. (2002). Geometrical Landscape: The Voyages of Discovery and the Transformation of Mathematical Practice. Stanford: Stanford University Press. ALFONSO-GOLDFARB, A. M. (1994a). O que é história da ciência. São Paulo: Brasiliense. (1994b) A magia das máquinas. John Wilkins e a origem da mecânica moderna. São Paulo: Experimento. (2003). Como se daria a construção de áreas interface do saber?. In Kairós. N.1, v. 6. (2008). Simão Mathias Centennial: Documents, Methods and Identity of History of Science. In Circumscribere. v. 4. ALFONSO-GOLDFARB, A. M; BELTRAN, M. H. R. (Orgs.). (2002). O laboratório, a oficina e o ateliê: a arte de fazer o artificial. São Paulo: Educ/FAPESP. (Orgs.). (2004). Escrevendo a História da Ciência: tendências, propostas e discussões. São Paulo: Educ; Ed. Livraria da Física; FAPESP. ALFONSO-GOLDFARB, A. M.; FERRAZ. M. H. M. (2009). Enredos, Nós e Outras Calosidades em História da Ciência. In ALFONSO-GOLDFARB, A. M.; GOLDFARB, J. L.; FERRAZ, M. H. M.; WAISSE, S. (Orgs.). Centenário Simão Mathias: documentos, métodos e identidade da História da Ciência. São Paulo: CESIMA; PUCSP, 25-36. AXWORTHY, A. (2009). The Epistemological Foundations of the Propaedeutic Status of Mathematics according to the Epistolary and Pefratory Writings of Oronce Fine. In MARR, A. (Org.). The Worlds of Oronce Fine: Mathematics, Instruments and Print in Renaissance France. Donington: Shaun Tyas, 31-51. BACHELARD, G. (1996). A formação do espírito científico: contribuição para uma psicanálise do conhecimento. Rio de Janeiro: Contraponto. BENNETT, J. (1991). The challenge of practical mathematics. In PUMFREY, S.; ROSSI, P. L.; SLAWINSKI, M. (Orgs.). Science, Culture and Popular Belief in Renaissance Europe. Manchester; New York: Manchester University Press, 176-190. (1998). Practical Geometry and Operative Knowledge. In Configurations. v. 6. (2003). Knowing and doing in the sixteenth century: what were instruments for?. In British Journal for the History of Science. N.2, v. 36. BESSE, J.-M. (2009). Cosmography in the Sixteenth Century: the Position of Oronce Fine between Mathematics and History. In MARR, A. (Org.). The Worlds of Oronce Fine: Mathematics, Instruments and Print in Renaissance France. Donington: Shaun Tyas, 100-113. BIAGIOLI, M. (1989). The Social Status of Italian Mathematicians. In History of Science. v. 27. BOULIER, P. (2010) Le problème du continu pour la mathematisation galiléene et la géometrie cavalierienne. In Early Science and Medicine. v. 15. BROMBERG, C.; SAITO, F. (2010). História da Matemática e a História da Ciência. In BELTRAN, M. H. R.; SAITO, F.; TRINDADE, L. dos S. P. (Orgs.). História da Ciência: tópicos atuais. São Paulo: Ed. Livraria da Física, 47-71. BUTTERFIELD, H. (2003). As origens da ciência moderna. Lisboa: Edições 70. CAMEROTA, F. (1998). Misurare “per perspectiva”: Geometria pratica e Prospectiva Pingendi. In SINISGALLI, R. (Ed.). La prospettiva: Fondamenti teorici ed esperienze figurative dall’antichità al mondo moderno. Firenze: Edizioni Cadmo, 293-308. CANGUILHEM, G. (1977). Ideologia e racionalidade nas ciências da vida. Lisboa: Edições 70. CHAPMAN, A. (1998). Gresham College: Scientific Instruments and the Advancement of Useful Knowledge in Seventeenth-Century England. In Bulletin of the Scientific Instrument Society. v. 56. CIOCCI, A. (2009). Luca Pacioli tra Piero della Francesca e Leonardo. Sansepolcro: Aboca Museum Edizioni. COHEN, I. B. (2005). The triumph of numbers: How counting shaped modern life. New York; London: W. W. Norton & Co. CONNER, C. D. (2005). A People’s History of Science: Miners, Midwives and ‘Low Mechanicks’. New York: Nation Books. COPENHAVER, B. P. (1990). Natural magic, hermetism, and occultism in early modern science. In LINDBERG, D. C.; WESTMAN, R. S. (Orgs.). Reappraisals of the Scientific Revolution. Cambridge: Cambridge University Press, 261-301. (1992). Did Science Have a Renaissance?. In Isis. v. 83. CORMACK, L. B. (2006). The Commerce of Utility: Teaching Mathematical Geography in Early Modern England. In Science & Education. v. 15. CROMBIE, A. C. (1995). The History of Science from Augustine to Galileo. Nova Iorque, Dover, 2 vols. CROSBY, A. W. (1999). A mensuração da realidade. A quantificação e a sociedade ocidental – 1250-1600. São Paulo: Ed. UNESP. CUOMO, S. (1998). Niccolò Tartaglia, mathematics, ballistics and the power of possession of knowledge. In Endeavour. N.1, v. 22. (2001). Ancient Mathematics. London; New York: Routledge. DEAR, P. (1995). Discipline & Experience: The Mathematical Way in the Scientific Revolution. ChicagO; London: University of Chicago Press. FOUCAULT, M. (1999). As palavras e as coisas: uma arqueologia das ciências humanas. 8a ed. São Paulo: Martins Fontes. (2000). A arqueologia do saber. 6a ed. Rio de Janeiro: Forense Universitária. GABBEY, A. (1997). Between ars and philosophia naturalis: reflections on the historiography of early moderns mechanics. In FIELD, J. V.; JAMES, F. A. J. L. (Orgs.). Renaissance & Revolution: Humanists, Scholars & Natural Philosophers in Early Modern Europe. Cambridge: Cambridge University Press, 133-145. GAGNÉ, J. (1969). Du Quadrivium aux Scientaie Mediae. In INSTITUTE D’ÉTUDE MEDIEVAL. Arts Liberaux et Philosophie au Moyen Age. Actes du IVe Congrès International de Philosophie Médiévale. Univ. de Montréal, 27/08-02/09, 1967, Inst. d’Étude Medieval. Montreal; Paris: J. Vrin, 975-978. GAVROUGLU, K.; CHRISTIANIDIS, J.; NICOLAIDIS, E. (Orgs.). (1994). Trends in the Historiography of Science. Dordrecht/Boston/London: Kluwer Academic. GILLIES, D. (Ed.). (1994). Revolutions in Mathematics. Oxford: Clarendon Press. GOLINSKI, J. (2005). Making natural knowledge: Constructivism and the History of Science. Chicago; London: Chicago University Press. GRAY, J. (2011). History of Mathematics and History of Science Reunited?. In Isis. v. 102. HALL, A. R. (1988). A revolução na ciência 1500-1750. Lisboa, Edições 70, 1988. (1983). Gunnery, Science, and the Royal Society. In BURKE, J. G. (Org.). The Uses of Science in the Age of Newton. Berkeley; Los Angeles; London: University of California Press, 111-41. HEILBRON, J. L. (2001). The Sun in the Church: Cathedrals as Solar Observatories. London; Cambridge: Harvard University Press. HIGTON, H. (2001). Does using an instrument make you mathematical? Mathematical practitioners of the 17th century. In Endeavour. N.1, v. 25. HINDLE, B. (1981). Emulation and Invention. New York: New York University Press. KUHN, T. S. (1997). A estrutura das revoluções científicas. 5ª ed. São Paulo: Perspectiva. KUSUKAWA, S.; MACLEAN, I. (Eds.). (2006). Transmitting knowledge: Words, images, and instruments in Early Modern Europe. Oxford: Oxford University Press. MANN, T. (2011). History of Mathematics and History of Science. In Isis. v. 102. MAAR, A. (Org.). (2009). The Worlds of Oronce Fine: Mathematics, Instruments and Print in Renaissance France. Donington: Shaun Tyas. MANCOSU, P. (1996). Philosophy pf Mathematics & Mathematical Practice in the Seventeenth Century. New York; Oxford: Oxford University Press. MARONNE, S. (2010). Pascal versus Descartes on Solution of Geometrical Problems and the Sluse-Pascal Correspondence. In Early Science and Medicine. v. 15. NASCIMENTO, C. A. R. do. (1998). De Tomás de Aquino a Galileu. Campinas: Ed. UNICAMP; IFCH. PALMERINO, C. R. (2010). The Geometrization of Motion: Galileo’s Triangle of Speed and its Various Transformations. In Early Science and Medicine. v. 15. POPPER, N. (2006). “Abraham, Planter of Mathematics”: Histories of Mathematics and Astrology in Early Modern Europe. In Journal of the History of Ideas. N.1, v. 67. ROSSI, P. (1970). Philosophy, Technology and the Arts in the Early Modern Era. New York; Evanston; London: Harper & Row. (1989). Os filósofos e as máquinas 1400-1700. São Paulo: Companhia das Letras. (2000). Naufrágios sem espectador: a idéia de progresso. São Paulo: Ed. UNESP. ROUX, S. (2010). Forms of Mathematization (14th-17th Centuries). In Early Science and Medicine. v. 15. SAITO, F. (2011). O telescópio na magia natural de Giambattista della Porta. São Paulo: Educ; FAPESP. (2012). História da Matemática e Ensino: As matemáticas nos séculos XVI e XVII. In TAVARES, A. R.; FELDMANN, G.; ROVERATTI, H. M. (Orgs.). Pesquisas PUC-SP. São Paulo: Educ, 44. SAITO, F.; DIAS, M. S. (2011). Articulação de entes matemáticos na construção e utilização de instrumento de medida do século XVI. Natal: Sociedade Brasileira de História da Matemática. SYLLA, E. D. (2010). The Oxford Calculator’s Middle Degree Theorem in Context. In Early Science and Medicine. v. 15. TAYLOR, E. G. R. (1954). The Mathematical Practitioners of Tudor & Stuart England. Cambridge: Institute of Navigation, Cambridge University Press. TURNER, G. L’E. (1998). Scientific Instruments, 1500-1900: An Introduction. Berkley; Los Angeles; London: University of California Press. VESCOVINI, G. F. (1969). L’inserimento della ‘perspectiva’ tra le arti del quadrivio. In INSTITUTE D’ÉTUDE MEDIEVAL. Arts Liberaux et Philosophie au Moyen Age. Actes du IVe Congrès International de Philosophie Médiévale. Univ. de Montréal, 27/08-02/09, 1967, Inst. d’Étude Medieval. Montreal; Paris: J. Vrin, 969-974. VEYNE, P. (1987). Como se escreve a história. Lisboa: Edições 70. YATES, F. A. (1995). Giordano Bruno e a tradição hermética. São Paulo: Cultrix. WARNER, D. J. (1990). What Is a Scientific Instrument, When Did It Become One, and Why?. In British Journal for the History of Science. v. 23. (1994). Terresterial Magnetism: For the Glory of God and the Benefit of Mankind. In Osiris. v. 9. WATERS, D. W. (1983). Nautical Astronomy and the Problem of Longitude. In BURKE, J. G. (Org.). The Uses of Science in the Age of Newton. Berkeley; Los Angeles; London: University of California Press, 143-69.