Hipótesis y conjeturas en el desarrollo del pensamiento estocástico: retos para su enseñanza y en la formación de profesores
Tipo de documento
Autores
Lista de autores
Huerta, Manuel Pedro
Resumen
En este artículo se reflexiona alrededor de la importancia que puede tener la dialéctica hipótesis-conjeturas no solo para el desarrollo del razonamiento demostrativo, sino que también para el desarrollo del pensamiento estocástico en los estudiantes. Se argumenta para ello razones de tipo curricular, de un enfoque de la enseñanza basado en la resolución de problemas, de una manera de resolver los problemas que considera la simulación como método de resolución con contenido heurístico y, finalmente, en nuevas propuestas sobre las matemáticas que requerirá el ciudadano del siglo XXI y que incluye el análisis de datos en contextos de incertidumbre. En consecuencia, se presenta una propuesta de formación inicial del profesorado que les permita abordar tales retos.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Inicial | Pensamientos matemáticos | Probabilidad | Procesos de justificación | Reflexión sobre la enseñanza
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
1
Rango páginas (artículo)
79-102
ISSN
20076819
Referencias
Batanero, C., Chernoff, E., Engel, J., Lee H., y Sánchez, E. (Eds.) (2016). Research on Teaching and Learning Probability, ICME-13 Topical Surveys, DOI: https://doi.org/10.1007/978-3-319- 31625-3_1 Begué, N., Batanero, C., y Gea, M. M. (2018). Comprensión del valor esperado y variabilidad de la proporción muestral en estudiantes de educación secundaria obligatoria. Enseñanza de las Ciencias 36(2), 63-79. Bernoulli, J. (1987/1713). Ars conjectandi - 4ème partie. Rouen: IREM. (Original work published in 1713). Beth, B. (1989). Using simulation to model real-world problems. In M. Morris (Ed.) Studies in Mathematics Education. The teaching of statistics, 7, 95-100. Paris: UNESCO. Benson, C. T., & Jones, G. A. (1999). Assessing Students’ Thinking in Modeling Probability Contexts. The mathematics Educator 4(2), 1-21. Borovcnik, M., & Kapadia, R. (2018). Reasoning with Risk: Teaching Probability and Risk as Tween Concepts. In C. Batanero & E. Chernoff (eds.), Teaching and Learning Stochastics, ICME-13 Monographs. DOI: https://doi.org/10.1007/978-3-319-72871-1_17 Bunge, M. (2013). La ciencia. Su método y su filosofía. Pamplona: Laetoli. Cardeñoso, J. M., Moreno, A., García- González, E., y Jiménez-Fontana, R. (2017). El sesgo de equiprobabilidad como dificultad para comprender la incertidumbre en futuros docentes argentinos. Avances de Investigación en Educación Matemática 11, 145 – 167. Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modelling and Simulation in Statistics and Probability Teaching. In C. Batanero, G. Burril, and C. Reading (eds.), Teaching Statistics in School Mathematics- Challenge for Teaching and Teachers Education: A Joint ICMI / IASE Study, (pp. 85-95). New York: Springer. De Villiers, M., & Heideman, N. (2014). Conjecturing, Refuting and Proving within the Context of Dynamic Geometry. Learning and Teaching Mathematics, 17, 20-26. Devlin, K. (2018). The Mathematics People Really Need. Presentación disponible en http:// curriculumredesign.org/wp-content/uploads/DEVLIN-talk-2018.pdf y vídeo en https://youtu. be/qBOnWZyq468, ambas visitada el 22 de junio de 2018. Eichler, A., & Vogel, M. (2014). Three Approaches for Modelling Situations with Randomness. In E. J. Chernoff, B. Sriraman (eds.) (2014), Probabilistic Thinking, Presenting Plural Perspective (pp. 75-100). Dordrecht: Springer Science+Business Media. Fernández, B., y Rodríguez, B. (2015). Del Ars Conjectandi al Valor de riesgo. Miscelánea matemática, 60, 25-45 Ferrater Mora, J. (1965). Diccionario de Filosofía. Buenos Aires: Editorial Sudamericana. Fiallo, J., & Gutiérrez, A. (2017). Analysis of the cognitive unity or rupture between conjecture and proof when learning to prove on a grade 10 trigonometry course. Educational Studies in Mathematics, 92(2), 145-167. Furinghetti, F., Olivero F., & Paola, D. (2010). Students approaching proof through conjectures: snapshots in a classroom. International Journal of Mathematics Education in Science and Technology 32(3), 319-335. DOI: https://doi.org/10.1080/00207390120360 Gordon, H. (1997). Discrete Probability. New York: Springer Huerta, M. P. (2002). El problema de la cueva. Elementos para un análisis didáctico de los problemas de probabilidad. Enseñanza de las Ciencias, 20(1), 75-86. Huerta, M. P. (2015). La resolución de problemas de probabilidad con intención didáctica en la formación de maestros y profesores de matemáticas. En C. Fernández, M. Molina y N. Planas (eds.), Investigación en Educación Matemática XIX (pp. 105-119). Alicante: SEIEM. Huerta, M. P. (2018). Preparing Teachers for Teaching Probability Through Problem Solving. In C. Batanero and E. J. Chernoff (eds.), Teaching and Learning Stochastics, ICME-13 Monographs (pp. 293-311). DOI: https://doi.org/10.1007/978-3-319-72871-1_17. Lakatos, I. (1976). Proofs and Refutations. Cambridge: Cambridge Academic Press. Lampert, M. (1990). When the Problem Is Not the Question and the Solution Is not the Answer: Mathematical Knowing and Teaching. American Educational Research Journal, 27(1), 29-63. Lecoutre, M. P. (1992). Cognitive models and problem spaces in purely random situations. Educational Studies in Mathematics, 23, 557-568. Llinares, S. (2018). Escribir narrativas. De observar a mirar profesionalmente. En L. J. Rodríguez- Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 39-50). Gijón: SEIEM Maa, K., & Doorman. (2013). A model for a widespread implementation of inquiry-based leaning. ZDM-International Journal on Mathematics Education, 45(6), 887-899. Makar, K. & Rubin, A. (2014). Informal statistical inference revisited. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA. Voorburg, The Netherlands: International Statistical Institute. Martínez, M. L., Huerta, P. y González, E. (2018). Dificultades de los maestros y profesores en formación para identificar hipótesis y conjeturas en una tarea de probabilidad. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXI (p.638). Gijón: SEIEM. Martínez, M. L. y Huerta, M. P. (2015). Diseño e implementación de una situación de incertidumbre en una clase de educación infantil. Edma 0-6: Educación Matemática en la Infancia, 4(1), 24-36. Ministerio de Educación, Cultura y Deporte (MEC, 2014a). Real Decreto 126/2014 de 28 de febrero por que se establece el currículo básico de la Educación Primaria. Boletín Oficial del Estado de 1 de marzo de 2014. Madrid. Ministerio de Educación, Cultura y Deporte (MEC, 2014b). Real Decreto 1105/ 2014 de 26 de diciembre por que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Boletín Oficial del Estado de 1 de enero de 2015. Madrid. Minyana, M. (2018). Hipòtesi i conjectures en el pensament estocàstic d’estudiants de 1er de Educació Secundària Obligatòria (12-13 anys). (Hypothesis and conjectures in 12-13 aged- students’ stochastic thinking). Trabajo de Fin de Máster de Investigación en Didácticas Específicas. Departament de Didàctica de la Matemàtica. Universitat de València. Pfannkuch, M. (2018). Reimaging Curriculum Approaches. In D. Ben-Zvi, K. Makar & J. Garfield (eds.) (2018), International Handbook of Research in Statistics Education (pp. 387-413). Springer International Handbooks of Education. https:// doi.org/10.1007/978-3-3319-66195-7_12 NCTM (2018). Principles and Standards for School Mathematics. Disponible en https://www. nctm.org/uploadedFiles/Standards_and_Positions/PSSM_ExecutiveSummary.pdf (visitado el 12 de julio de 2018) Poincaré, H. (1992). La Science et l’Hypothèse. Rueil-Malmason: La Bohème. Polya, G. (1966). Matemáticas y razonamiento plausible. Madrid: Tecnos. Popper, K. (1977). La lógica de la investigación científica. Madrid: Tecnos. Pratt, D. (2011). Re-connecting probability and reasoning about data in secondary school teaching. Proceedings of the 58th World Statistical Congress (pp. 890-899). Dublin. Saldanha, L., & Liu, Y. (2014). Challenges in Developing Coherent Probabilistic Reasoning: Rethinking Randomness and Probability from a Stochastic Perspective. In E. J. Chernoff, B. Sriraman (eds.) (2014), Probabilistic Thinking, Presenting Plural Perspective (pp. 367-398). Dordrecht: Springer Science+Business Media. Schup, H. (1989). Appropriate teaching and learning of stochastics in the middle grades (5-10). In M. Morris (Ed.) Studies in Mathematics Education. The teaching of statistics. (vol. 7), (pp. 101-121). Paris: UNESCO. Spiegelhalter, D., & Gage, J. (2014). What Can Education Learn from Real-World Communication of Risk and Uncertainty? The Mathematics Enthusiast 12(1-3), 4-10. Serrano, L., Batanero, C., Ortiz, J. J., & Cañizares M. J. (1998). Heurísticas y sesgos en el razonamiento probabilístico de los estudiantes de secundaria. Educación Matemática, 10(1), 7-25. Shaughnessy, J. M. (1983). The psychology of inference and the teaching of probability and statistics: Two sides of the same coin? In R. W. Sholz (Ed.), Decision making under uncertainty (pp. 325-350). Amsterdam, The Netherlands: Elsevier. Wild, C. J., & Pfannkuch, M. (1999). Statistical Thinking in Empirical Enquiry. International Statistical Review 67 (3), 223-265. Zimmermann, G. (2002). Students’ reasoning about probability simulation during instruction. Doctoral Dissertation. Retrieved from https://www.stat.auckland.ac.nz/~iase/publications/ dissertations/02.Zimmerman.Dissertation.pdf