Construcción social de los procesos de definir y demostrar
Tipo de documento
Autores
Lista de autores
Alvarado, Angelina y González, María Teresa
Resumen
Dado que los procesos de definir y demostrar en matemáticas no están considerados como objeto de estudio en los diferentes niveles educativos, realizamos una investigación en la educación inicial universitaria con el propósito de mostrar la importancia y el papel de las definiciones dentro del proceso de demostrar. Tratamos de mejorar su comprensión por parte de los estudiantes a través de una secuencia didáctica centrada en el análisis de los procesos de construcción social de tal conocimiento. A la luz del modelo Abstracción en Contexto, analizamos el flujo de conocimiento de un estudiante a otro mediante las interacciones producidas. Finalmente documentamos que la secuencia contribuye a su aprendizaje, dado que el conocimiento base compartido les permite incorporar habilidades y sutilezas para deconstruir definiciones y utilizarlas para realizar demostraciones y comunicarlas.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Formativos | Inicial | Otro (fundamentos) | Sociopolíticos | Teoría social del aprendizaje
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
ALCOCK, L. Y WEBER, K. Referencial and syntactic approaches to proof: Case studies from a transition course. En H. L. Chick y J. L. Vincent (Ed.), Proceedings of the 29 PME International Conference. 2 (pp 33-40). Melbourne Australia: PME. 2005. ALVARADO, A. Y GONZÁLEZ, M. T. A study of university students’ performance with proof En Proceedings CIAEM 61. Quaderni di ricerca in didattica (Scienze Mathematiche) of G.R.I.M., Palermo 2-19, (pp 348-352). Montréal, Quebéc, Canadá. 2009. ALVARADO, A. Y GONZÁLEZ, M. T. La implicación lógica en el proceso de demostración matemática: estudio de un caso. Enseñanza de las Ciencias, 28(1), 73-84. 2010. ALVARADO, A. Y GONZÁLEZ, M. T. Generación interactiva del conocimiento para iniciarse en el manejo de implicaciones lógicas. RELIME. Revista latinoamericana de investigación en matemática educativa, 16(1), 37-63. 2013a. ALVARADO, A. Y GONZÁLEZ, M. T. Interactive Reconstruction of a definition. En B. Ubuz, C. Haser y M.A. Mariotti (eds.) Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp 2276-2285). Antalya, Turquía. 2013b. ALVARADO, A. Y GONZÁLEZ, M. T. El método de demostración directo aplicado a una situación extramatemática. En Investigaçao em Educaçáo Matemática. Raciocinío matemático. EIEM2013 (pp 405-419). Covilha, Portugal: Sociedade Portuguesa de Investigaçao em Educaçao Matemática. 2013c. ALVARADO, A. Y GONZÁLEZ, M. T. Definir, buscar ejemplos, conjeturar… para probar si un número es feliz. Avances de Investigación en Educación Matemática, 1(5), 5-24. 2014. ALVARADO, A. El estatus de la demostración matemática en el aula: de una noción paramatemática al diseño de una ingeniería didáctica. Tesis doctoral, Universidad de Salamanca, España. 2015. BILLS, L. Y TALL, D. Operable Definitions in Advanced Mathematics: The case of the Least Upper Bound. En Proceedings of PME 22th International Conference. 2, (pp. 104-111). Stellenbosch, South Africa: PME. 1998. CHEVALLARD, Y. La transposition didactique. Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage. 1991 CHIN, E.-T. Y TALL, D. Making, having and compressing formal mathematical concepts. En Nakahara, y M. Koyamal (Ed.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education, 2 (pp.177-184). 2000. CHIN, E.-T. Y TALL, D. Proof as a Formal Procept in Advanced Mathematical Thinking. En International Conference on Mathematics: Understanding Proving and Proving to Understand (pp. 212-221). Taipei, Taiwan: National Taiwan Normal University. 2002. COBB, P. Mathematical learning and small-group interaction: Four case studies. En P. Cobb, H. Bauersfeld, P. Cobb, y H. Bauersfeld (Ed.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 25-129). Hillsdale: Laurence Erlbaum. 1995. DE VILLIERS, M. To teach definitions in geometry or to teach to define? En A. Olivier y K. Newstead (Ed.), Proceedings of the 22nd Annual Conference of the International Group for the Psychology of Mathematics Education. 2, (pp. 248-255). Stellenbosch, ZA: PME. 1998. DREYFUS, T., HERSHKOWITZ, R. Y SCHWARZ, B. The nested epistemic actions model for abstraction in context: theory as methodological tool and methodological tool as theory. En Approaches to Qualitative Research in Mathematics Education (pp. 185-217). New York London: Springer Netherlands. 2015. EDWARDS, B. Y WARD, M. Surprises from Mathematics Education Research: Student (Mis)use of Mathematical Definitions. The Mathematical Association of America Monthly, 111, 411-424. 2004. GAVILÁN, J. M.; SÁNCHEZ-MATAMOROS, G. Y ESCUDERO, I. El proceso de definir en matemáticas desde una perspectiva comognitiva. En Actas del XVI Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 275-283). Jaén, España: SEIEM. 2012. GONZALEZ, M. T. Y ALVARADO, A. Proof by reductio ad absurdum: an experience with university students. Proceedings of the Ninth Congress of European Research in Mathematics (72-78). CERME 9. Czech Republic, Praga. 2015. HAREL, G. Y SOWDER, L. Students´ proof schemes: Results from exploratory studies. En A. H. Schoenfeld, J. Kaput, E. Dubinsky, A. H. Schoenfeld, J. Kaput, y E. Dubinsky (Ed.), Research in Collegiate Mathematics Education III (pp. 234-283). Providence: American Mathematical Society. 1998. IBAÑES, M. Aspectos cognitivos de la demostración matemática en alumnos de primer curso de bachillerato. Tesis Doctoral, Universidad de Valladolid. 2001. LAKATOS, I. Pruebas y refutaciones. Madrid: Alianza. 1978. MEJIA-RAMOS, J. P.; FULLER, E.; WEBER, K.; RHOADS, K.; Y SAMKOFF, A. An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3- 18. 2012. PEDEMONTE, B. Y BUCHBINDER, O. Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers. ZDM Mathematics Education, 43, 257-267. 2011. PINTO, M. Y TALL, D. Student constructions of formal theory: giving and extracting meaning. En O. Zaslavsky (Ed.), Proceedings of the 23rd International Conference of PME. 4 (pp. 65-73). Haifa, Israel: PME. 1999. SELDEN, A. Y SELDEN, J. Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29, 123-151. 1995. SFARD, A. Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York: Cambridge University Press. 2008. SCHWARZ, B., DREYFUS, T. Y HERSHKOWITZ, R. The nested epistemic actions model for abstraction in context. En B. Schwarz, T. Dreyfus, R. Hershkowitz, B. Schwarz, T. Dreyfus, y R. Hershkowitz (Ed.), Transformation of Knowledge through Classroom Interaction (pp. 11-42). London, UK: Routledge. 2009. TALL, D.; GRAY, E.; ALI, M. B.; CROWLEY, L.; DEMAROIS, P.; MCGOWEN, M.; Y YUSOF, Y. Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Math, Science & Technology Education, 1(1), 81-104. 2001. THURSTON, W. On proof and progress in mathematics. Bulletin (New Series) of the AMS, 30 (2), 161 -177. 1994. VINNER, S. The notion of proof some aspects of students’ views at the senior high level. En R. Hershkowitz (Ed), Proceedings of the 7th Conference of the Psychology of Mathematics Education (pp. 289-294). Shoresh, Israel: 1983. VOIGT, J. Thematic patterns of interaction and sociomathematical norms. En P. Cobb, H. Bauersfeld (Ed.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 163-201). New Jersey: Lawrence Erlbaum Associates. 1995 WATSON, A. Y MASON, J. Mathematics as a constructive activity: learners generating examples. Mahwah, NewJersey: Lawrence Erlbaum Associates, publishers. 2005.