What is mathematics, really? who wants to know?
Tipo de documento
Autores
Lista de autores
Friedrich, Márcia
Resumen
Famous physicists, like Einstein and Wigner have been wondering, why mathematical symbolism could play such an effective and decisive role in the development of physics. Since the days of Plato, there have been essentially two different answers to this question. To Plato mathematics was a science of the unity and order of this universe. Since Galilei people came to believe that mathematics does not describe the objective world, it is not a reflection of some metaphysical realism. It is rather a reflection of human activity in this world. Kant, by his “Copernican Revolution of Epistemology” seems to have been the first to realize this. For example, number, or more generally arithmetic, was to the Pythagoreans “a cosmology” (KLEIN, 1985, p. 45), to Dedekind it is a means to better distinguish between things. The paper sketches the transition from an ontological to a semiotic interpretation of mathematics.
Fecha
2015
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
29
Número
52
Rango páginas (artículo)
756-772
ISSN
19804415
Referencias
BARROW, J. D. Perche il mondo e matematico?. Roma: Editore Guis, 1992 BOCHNER, S. The Role of Mathematics in the Rise of Science. Princeton: Princeton University Press, 1996 BOCHNER, S. Mathematical Reflections. The American Mathematical Monthly, Washington DC, v. 81, p. 827-852. 1974. CASARI, E. Axiomatical and Set-Theoretical Thinking. Synthese, New York: Springer. V. 27, p. 49- 61. 1974. CASSIRER, E. Substanzbegriff und Funktionsbegriff. Berlin: Verlag Bruno Cassirer, 1910 CAUCHY, A. L. Œuvres complètes d'Augustin Cauchy. Paris: Gautier-Villar. Série 1, tome 8, 1882. DELEUZE, G & GUATTARI, F. What is Philosophy?. Translation by TOMLINSON, H. & BURCHELL, G. New York: Columbia University Press, 1994. EFFROS, E. G. Mathematics as Language, In: DALES, H. G. & OLIVERI, G. (Ed.). Truth in Mathematics. Oxford: Oxford University Press, 1998. p. 131-146. ENGELS, F. Herrn Eugen Dührings Umwälzung der Wissenschaft. Leipzig: Genossenschafts- Buchdruckerei, 1878. EULER, L. Introductio in analysin infinitorum, Heidelberg: Springer, 1748. FERREIRÓS, J. Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics. Basel: Birkhäuser Verlag, 1999 FREGE, G. Die Grundlagen der Arithmetik. Breslau: W. Koebner, 1884. English translation in FREGE, G. The Foundations of Arithmetics. Evanston, Illinois: Northwestern University Press, 1974 HAHN, R. Kant’s Newtonian Revolution in Philosophy. Carbondale: Southern Illinois University Press, 1988. HEIJENOORT, J. V. Logic as Calculus and Logic as Language. Synthese, New York: Springer, v. 17, p. 324-330. 1967. HERSH, R. What is Mathematics Really? Oxford: Oxford University Press, 1997. KANT, I. Critique of Pure Reason, second edition. 1787. English translation: Norman Kemp Smith. Edinburgh: MacMillan, 1929. KLEIN, J. Lectures and Essays, Annapolis: St John’s College Press, 1985. LOCKE, J. An Essay Concerning Human Understanding. New York: Prometheus Books, 1975. MARKUS, G. Language and Production. Boston Studies in the Philosophy of Science: Kluwer, 1986. MARTIN, G. Arithmetik und Kombinatorik bei Kant. Berlin: de Gruyter, 1956. OTTE, M. Mathematical history, philosophy and education, Educational Studies in Mathematics,Springer Netherlands, v. 66, p. 243-255. 2007. PEIRCE, C. S. CP = Collected Papers of Charles Sanders Peirce, Volumes I-VI, ed. by Charles Hartshorne and Paul Weiss, Cambridge, Mass. (Harvard UP) 1931-1935, Volumes VII-VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard UP) 1958 (quoted by no. of volume and paragraph) REID, C. Hilbert. Heidelberg: Springer, 1970. RUSSELL, B. The Analysis of Matter. London: Allan & Unwin, 1954. RUSSELL, B. Introduction to Mathematical Philosophy. London: Routledge, 1967. SKEMP, R. Relational Understanding and Instrumental Understanding, The Arithmetic Teacher, v. 3, p. 9-15. 1978. THOM, R. Modern Mathematics: Does it Exist?. In: HOWSON, A. G. (Ed.). Developments in Mathematical Education, Cambridge: Cambridge University Press, 1973. p. 194-212. TURNER, M. The Origin of Ideas. Oxford: Oxford University Press, 2014. WIENER, N. Pure and applied mathematics. In: HENLE, P. (Ed.). Structure, method and meaning. New York: The Liberal Arts Press, 1951. p. 92.